Равны или нет множества и. Мощность множества: примеры. Мощность объединения множеств. Множество рациональных чисел

Множество a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a A , то пишут (a не входит в A , A не содержит a a , b , c

Операции над множествами .

Универсальное множество

Универса́льное мно́жество

Диаграммы Венна. Тождества алгебры множеств и их доказательство.

Диаграмма Венна - схематичное изображение всех возможных пересечений нескольких множеств, показывают математические, теоретико-множественные или логические отношения между множествами.

Тождества и их доказательства.

Для произвольных множеств А, В, и С справедливы следующие соотношения:

1. Коммутативность:

2. Ассоциативность

3. Дистрибутивность объединения относительно пересечения

3’. Дистрибутивность пересечения относительно объединения

4. Законы действия с пустым и универсальным множествами

5. Закон идемпотентности

6. Закон де Моргана

7. Закон поглощения

,

8. Закон склеивания

,

9. Закон Порецкого

,

10. Закон двойного дополнения

Доказать следующее тождество .

Докажем это тождество аналитическим способом (используя равносильности алгебры множеств)

Понятие формального языка

Формальный язык - язык, характеризующийся точными правилами построения выражений и их понимания. Он строится в соответствии с четкими правилами, обеспечивая непротиворечивое, точное и компактное отображение свойств и отношений изучаемой предметной области (моделируемых объектов).

Формальный язык – основа создания программного обеспечения.

ФЯ образуется с помощью исходного набора букв а1, а2, …., а100, с помощью букв образуются слава. Слово в формальном языке – упорядоченный набор букв (Ящерица – 30 букв)

Для операции * слов справедлив ассоциативный закон.

Теория полугрупп и полуколец – основа теории ФЯ

Тавтологии

Тавтология – тождественно-истинное высказывание, которое всегда истинно.

Простейшая тавтология - выражение (A или не A ), представляющее закон исключённого третьего, где вместо A может быть подставлено любое выражение,могущее быть ложным или истинным, например свет включен или не включен , дважды два равно или не равно пяти . Тавтологией являются и законы математической логики выраженные через оператор эквивалентности: и т. п.

Понятие высказывательной формы или предиката от одной переменной. Примеры предикатов.

Предикат – высказывание зависящее от какой-то меняющейся переменной величины.

Одноместный предикат – отображение, по которому каждому значению переменой указывается единственное значение 0 или 1 .примеры:

Конъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката А(х) В(х), х Х является пересечение множеств истинности предикатов А(х) – Т1 и В(х) – Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное число», В(х): « х кратно 3». А(х) В(х) – «х – четное число и х кратно 3». Т.е. предикат «х делится на 6».

Отрицанием предиката А(х) называется новый предикат, который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката, х Х является дополнение Т" к множеству Т в множестве Х.

Возьмём высказывания: `` Сократ - человек "", `` Платон - человек "". Оба эти высказывания выражают свойство ``быть человеком"". Таким образом, мы можем рассматривать предикат `` быть человеком "" и говорить, что он выполняется для Сократа и Платона.

25 область определения и область истинности предиката

Множество М, на котором определен предикат P(х) , называется областью определения предиката.

Множество всех элементов х Î М, при которых преди­кат принимает значение «истина», называется множеством истинности предиката Р(х), то есть множество истиннос­ти предиката Р(х) - это множество 1р = {х| х Î М, Р(х) = 1}.

Р(х): «х 2 + 1> 0, xÎ R»; область определения предиката М = R и область истинности – тоже R, т.к. неравенство верно для всех действительных чисел. Таким образом, для данного предиката М = I p . Такие предикаты называются тождественно истинными.

В(х): «х 2 + 1< 0, xÎ R»; область истинности I p =Æ, т.к. не существует действительных чисел, для которых выполняется неравенство. Такие предикаты называются тождественно ложными.

Кванторы. Двухместные предикаты. Определения уравнения, тождества и неравенства.

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:

· Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).

· Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).

Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):

1. любое натуральное число кратно 5;

2. каждое натуральное число кратно 5;

3. все натуральные числа кратны 5;

следующим образом:

.

Следующие (уже истинные) высказывания используют квантор существования:

1. существуют натуральные числа, кратные 5;

2. найдётся натуральное число, кратное 5;

3. хотя бы одно натуральное число кратно 5.

Их формальная запись:

.

· Высказывание означает, что область значений переменной включена в область истинности предиката .

(«При всех значениях (x) утверждение верно»).

· Высказывание означает, что область истинности предиката непуста.

(«Существует (x) при котором утверждение верно»).

Операции над кванторами

Правило отрицания кванторов - применяется для построения отрицаний высказываний, содержащих кванторы, и имеет вид:

Двухместный предикат – отображение, по которому каждой паре переменных указывается единственное значение 0 или 1.

Предикат является двухместным предикатом, предметной областью которого могут служить любые множества действительных чисел. Высказывание истинно, а высказывание ложно. Если вместо одной из переменных подставить число, то получится одноместный предикат.

Пересечение графов

Пусть G1(V1,E1) и G’2(V2’,E2’) – произвольные графы. Пересечением G1∩G’2 графов G1 и G’2 называется граф с множеством вершин V1∩V’2 с множеством ребер E = E1∩E’2

Свойства

· Пересечение множеств является бинарной операцией на произвольном булеане 2 X ;

коммутативна :

· Операция пересечения множеств транзитивна (ассоциативность) :

· Универсальное множество X является нейтральным элементом операции пересечения множеств:

· Таким образом булеан вместе с операцией пересечения множеств является абелевой группой;

· Операция пересечения множеств идемпотентна:

· Если - пустое множество, то

Остов и коостов графов.

Остов графа - такой его подграф, который является деревом.

Коостов – дополнение остова до графа.

Понятие множества. Операции над множествами. Универсальное множество.

Множество (N- натуральные,Z-целые,Q-рационал, R-действительные) – неопределяемое понятие, это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Простое множество не имеет ни одного элемента. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

«пустое множество» - множество, не содержащее ни одного элемента, его обозначают

Способы задания: табличный, перечислением элементов, графический, рекуррентный, формулой.

Операции над множествами .

Пересечение множеств – множество, состоящее из элементов, которые принадлежат обоим множествам.

Для пересечения множеств справедливы:

· X∩Y=Y∩X - коммутативный закон

· (X∩Y)∩Z = X∩(Y∩Z) = X∩Y∩Z - ассоциативный закон

Объединение множеств – множество, состоящее из элементов, принадлежащих хотя бы одному из множеств.

Для объединенных множеств справедливы:

· XUY = YUX - коммутативный закон

· (XUY) UZ = XU (YUZ) = XUYUZ - ассоциативный закон,

Универсальное множество

Универса́льное мно́жество - множество, содержащее все мыслимые объекты. Универсальное множество единственно.

Универсальное множество – множество, которое содержит все элементы, из которых может состоять другое множество, т.е. полностью содержать все элементы универсального множества. .

Если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества, то это самое большое множество будем считать универсальным.

Универсальное множество обладает интересным свойством, которое не имеет аналогии в обычной алгебре, а именно, для любого множества X справедливо соотношение XU(объединение)I = I.

Универсальное множество обычно обозначают графически в виде множества точек прямоугольника, а отдельные множества в виде отдельных областей внутри этого прямоугольника. Изображение множеств в виде областей в прямоугольнике, представляющем универсальное множество, называется диаграммой Эйлера-Венна.

Основные понятия теории множеств

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Если – элемент множества M , то говорят « принадлежит M » и пишут: . Если некоторый объект не является элементом множества, то говорят « не принадлежит M » и пишут (иногда ).

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M , а всякий элемент, не обладающий этим свойством, не принадлежит M . Множество элементов, обладающих свойством , обозначается так:

или .

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);



– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Слово «множество» наводит на мысль, что оно содержит много элементов. Но это не всегда так. В математике могут рассматриваться множества, содержащие только один элемент. Например, множество целых корней уравнения . Более того, удобно говорить о множестве, не содержащем ни одного элемента. Такое множество называется пустым и обозначается через Ø. Например, пустым является множество действительных корней уравнения .

Определение 1. Множества и называются равными (обозначается А=В ), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Обозначения: (« включается в »); (« включает »).

Ясно, что Ø и само множество являются подмножествами множества . Всякое другое подмножество множества называется его правильной частью . Если и , то говорят, что « А собственное подмножество »или что «А строго включается в » и пишут .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств : чтобы доказать, что множества и равны, достаточно показать, что , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований .

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U , которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество R действительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна .

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:


– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

и .

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1. Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2. Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3. Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .– заштрихованная часть; . с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множеств илиалгеброй Булямножеств (вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U. Поэтому их и называют законами алгебры множеств.

Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах.

Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный и растительный мир данной области, классифицирует все особи по видам, виды по родам и т.д. Каждый вид является некоторой совокупностью живых существ, рассматриваемой как единое целое.

Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845-1918), «множество есть многое, мыслимое нами как единое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такого определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве натуральных чисел, множестве треугольников на плоскости.

Множества, состоящие из конечного числа элементов, называются конечными, а остальные множества – бесконечными. Например, множество китов в океане конечно, а множество рациональных чисел бесконечно. Конечные множества могут быть заданы перечислением их элементов (например, множество учеников в данном классе задается их списком в классном журнале). Если множество состоит из элементов , то пишут: . Бесконечные множества нельзя задать перечнем их элементов. Их задают обычно, указывая свойство, которым обладают все элементы данного множества, но не обладают никакие элементы, не принадлежащие этому множеству. Такое свойство называют характеристическим для рассматриваемого множества. Если - сокращенное обозначение предложения «элемент обладает свойством », то множество всех элементов, имеющих свойство , обозначают так: . Например, запись означает множество корней уравнения , т.е. множество . Может случиться, что не существует ни одного элемента, обладающего свойством (например, нет ни одного нечетного числа, которое делилось бы на 2). В этом случае во множестве нет ни одного элемента. Множество, не содержащее ни одного элемента, называется пустым. Его обозначают знаком .

Если элемент принадлежит множеству , то пишут: , в противном случае пишут: или . Множества, состоящие из одних и тех же элементов, называют равными (совпадающими). Например, равны множество равносторонних треугольников и множество равноугольных треугольников, так как это одни и те же треугольники: если в треугольнике все стороны равны, то равны и все его углы; обратно, из равенства всех трех углов треугольника вытекает равенство всех трех его сторон. Очевидно, что равны два конечных множества, отличающиеся друг от друга лишь порядком их элементов, например .

Всякий квадрат является прямоугольником. Говорят, что множество квадратов является частью множества прямоугольников, или, как говорят в математике, является подмножеством множества прямоугольников. Если множество является подмножеством множества , то пишут: или . Для любого множества верны включения и .

Из данных множеств и можно построить новые множества, применяя операции пересечения, объединения и вычитания. Пересечением множеств и называют их общую часть, т.е. множество элементов, принадлежащих как , так и . Это множество обозначают: . Например, пересечением двух геометрических фигур является их общая часть, пересечением множества ромбов с множеством прямоугольников – множество квадратов и т.д.

Объединением множеств и называют множество, составленное из элементов, принадлежащих хотя бы одному из этих множеств. В различных вопросах классификации используется представление множеств в виде объединения попарно непересекающихся подмножеств. Например, множество многоугольников является объединением множества треугольников, четырехугольников, ..., -угольников.

Если применять операции объединения и пересечения к подмножествам некоторого множества , то снова получатся подмножества того же множества . Эти операции обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности, пересечение дистрибутивно относительно объединения, т.е. для любых множеств и верно соотношение и т.д. Но в то же время у операций над множествами есть ряд свойств, не имеющих аналогов в операциях над числами. Например, для любого множества верны равенства и , верен второй закон дистрибутивности и т.д.

С помощью свойств операций над множествами можно преобразовывать выражения, содержащие множества, подобно тому как с помощью свойств операций над числами преобразовывают выражения в обычной алгебре. Возникающая таким путем алгебра называется булевой алгеброй, по имени английского математика и логика Дж. Буля (1815-1864), который занимался ею в связи с проблемами математической логики. Булевы алгебры находят многочисленные применения, в частности в теории электрических сетей.

Основной характеристикой конечного множества является число его элементов (например, множество вершин квадрата содержит 4 элемента). Если в множествах и поровну элементов, например если , , то из элементов этих множеств можно составить пары , причем каждый элемент из , равно как и каждый элемент из , входит в одну, и только одну, пару. Говорят, что в этом случае между элементами множеств и установлено взаимно-однозначное соответствие. И наоборот, если между двумя конечными множествами и можно установить взаимно-однозначное соответствие, то в них поровну элементов.

Г. Кантор предложил аналогичным образом сравнивать между собой бесконечные множества. Говорят, что множества и имеют одинаковую мощность, если между ними можно установить взаимно-однозначное соответствие. Сравнивая таким путем множества, составленные из чисел, Кантор показал, что существует взаимно-однозначное соответствие между множеством натуральных чисел и множеством рациональных чисел, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств теряет силу утверждение, что «часть меньше целого».

Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Важнейший пример несчетного множества – множество всех действительных чисел (или, что то же самое, множество точек на прямой линии). Так как прямая линия непрерывна, то такую несчетную мощность называют мощностью континуума (от латинского continuum - «непрерывный»). Мощность континуума имеют множества точек квадрата, куба, плоскости и всего пространства.

В течение долгих лет математики решали проблему: существует ли множество, мощность которого является промежуточной между счетной и мощностью континуума. В 60-х гг. нашего века американский математик П. Коэн и чешский математик П. Вопенка почти одновременно независимо друг от друга доказали, что как существование такого множества, так и отсутствие его не противоречат остальным аксиомам теории множеств (подобно тому, как принятие аксиомы о параллельных или отрицание этой аксиомы не противоречат остальным аксиомам геометрии).

Что такое множество в математике? Математическое множество - это несколько отдельных элементов, рассматриваемых, как единое целое. Если обозначить такой элемент буквой a, а само множество - буквой А, то запись будет выглядеть следующим образом:

проговаривается эта запись так: a принадлежит А, или А содержит а, или а - элемент А.

Для перечисления элементов множества используются фигурные скобки - {}. То есть, например, множество, в котором а ∈ А, b ∈ A и c ∈ A, будет записываться в таком виде:

Виды множеств.

Пустые множества.

Пустое множество – это то множество, которое вообще не содержит никаких элементов. Обозначается оно цифрой 0 или специальным значком ∅.

Примером пустого множества может служить любое нелогичное понятие , противоречащее самому себе - «множество птиц, живущих на дне океана», или «множество деревьев на Луне». Поскольку оба множества лишены смысла и не отвечают реальности, то, следовательно, они являются пустыми. Скажем, количество деревьев на Луне – 0, поэтому «множество деревьев на Луне» будет пустым (не будет содержать ни одного элемента).

Равные множества.

Равные множества – это два или более множеств, состоящих из равных наборов элементов. Приведём пример. Скажем, все члены Вашей семьи находятся на кухне. Таким образом, Множество «Члены семьи на кухне» будет равно множеству «Члены семьи в квартире».

Если два множества - А и B - состоят из одинакового набора элементов, то они будут равны, то есть А = B. Элементы множеств могут перечисляться в любой последовательности, на результат это никак не влияет. Множество {a, b, c} можно с тем же успехом записать, как {a, c, b}, или {с, b, a}, или {b, c, a}.

Подмножества и надмножества.

Если множества А и B состоят из одинаковых элементов {a, b, c}, то А будет считаться подмножеством B, а B - надмножеством А. Записывается это следующим образом:

A ⊆ B, B ⊇ A.

Бывает так, что множество В содержит в себе каждый из элементов множества А, но в то же время в нем присутствуют и другие элементы, множеству А не принадлежащие. В этом случае множество В становится собственным надмножеством А, в то время как множество А становится собственным подмножеством В.

Иначе говоря, если А ⊆ В, но при этом А ≠ В, то А ⊂ В, В ⊃ А.

Достаточно часто в математической науке возникает ряд трудностей и вопросов, причем многие ответы не всегда проясняются. Не исключением стала такая тема, как мощность множеств. По сути, это не что иное как численное выражение количества объектов. В общем смысле множество является аксиомой, у него нет определения. В основе лежат любые объекты, а точнее их набор, который может носить пустой, конечный или бесконечный характер. Кроме этого, он содержит числа целые или натуральные, матрицы, последовательности, отрезки и прямые.

О существующих переменных

Нулевой или пустой набор, не имеющий собственного значения, считается элементом мощности, так как это подмножество. Сбор всех подмножеств непустого множества S является множеством множеств. Таким образом, набор мощности заданного множества считается многим, мыслимым, но единым. Это множество называется множеством степеней S и обозначается P (S). Если S содержит N элементов, то P (S) содержит 2 ^ n подмножеств, так как подмножество P (S) является либо ∅, либо подмножеством, содержащим r элементов из S, r = 1, 2, 3, ... Составленное из всего бесконечного множества M называется степенным количеством и символически обозначается P (M).

Эта область знаний была разработана Джорджем Кантором (1845-1918 годы жизни). Сегодня она используется почти во всех отраслях математики и служит ее фундаментальной частью. В теории множеств элементы представлены в форме списка и заданы типами (пустой набор, одноэлементный, конечные и бесконечные множества, равные и эквивалентные, универсальные), объединение, пересечение, разность и дополнение чисел. В повседневной жизни часто говорится о коллекции таких объектов, как куча ключей, стая птиц, пачка карточек и т. д. В математике 5 класса и не только, встречаются натуральные, целые, простые и составные числа.

Можно рассмотреть следующие множества:

  • натуральные числа;
  • буквы алфавита;
  • первичные коэффициенты;
  • треугольники с разными значениями сторон.

Видно, что эти указанные примеры представляют собой четко определенные множества объектов. Рассмотрим еще несколько примеров:

  • пять самых известных ученых мира;
  • семь красивых девушек в обществе;
  • три лучших хирурга.

Эти примеры мощности множества не являются четко определенными коллекциями объектов, потому, что критерий "наиболее известных", "самых красивых", "лучших" варьируется от человека к человеку.

Наборы

Это значение представляет собой четко определенное количество различных объектов. Предположив, что:

  • набор слов является синонимом, агрегатом, классом и содержит элементы;
  • объекты, члены являются равными по значению терминами;
  • наборы обычно обозначаются прописными буквами ;
  • элементы набора представлены маленькими буквами a, b, c.

Если «a» - элемент множества A, то говорится, что «a» принадлежит A. Обозначим фразу «принадлежит» греческим символом «∈» (epsilon). Таким образом, выходит, что a ∈ A. Если "b" - элемент, который не принадлежит A, это представляется как b ∉ A. Некоторые важные наборы, используемые в математике 5 класса, представляют, используя три следующих метода:

  • заявки;
  • реестров или табличные;
  • правило создания построения.

При детальном рассмотрении форма заявления основана на следующем. В этом случае задано четкое описание элементов множества. Все они заключены в фигурные скобки. Например:

  • множество нечетных чисел, меньших 7 - записывается как {меньше 7};
  • набор чисел больше 30 и меньше 55;
  • количество учеников класса, вес которых больше, чем учителя.

В форме реестра (табличной) элементы набора перечислены в паре скобок {} и разделены запятыми. Например:

  1. Пусть N обозначает множество первых пяти натуральных чисел. Следовательно, N = → форма реестра
  2. Набор всех гласных английского алфавита. Следовательно, V = {a, e, i, o, u, y} → форма реестра
  3. Множество всех нечетных чисел меньше 9. Следовательно, X = {1, 3, 5, 7} → форма реестра
  4. Набор всех букв в слове «Математика». Следовательно, Z = {M, A, T, H, E, I, C, S} → Форма реестра
  5. W - это набор последних четырех месяцев года. Следовательно, W = {сентябрь, октябрь, ноябрь, декабрь} → реестр.

Стоит отметить, что порядок, в котором перечислены элементы, не имеет значения, но они не должны повторяться. Установленная форма построения, в заданном случае правило, формула или оператор записываются в пару скобок, чтобы набор был корректно определен. В форме set builder все элементы должны обладать одним свойством, чтобы стать членом рассматриваемого значения.

В этой форме представления набора элемент множества описывается с помощью символа «x» или любой другой переменной, за которой следует двоеточие («:» или «|» используется для обозначения). Например, пусть P - множество счетных чисел, большее 12. P в форме set-builder написано, как - {счетное число и больше 12}. Это будет читаться определенным образом. То есть, «P - множество элементов x, такое, что x является счетным числом и больше 12».

Решенный пример с использованием трех методов представления набора: количество целых чисел, лежащих между -2 и 3. Ниже приведены примеры различных типов наборов:

  1. Пустой или нулевой набор, который не содержит какого-либо элемента и обозначается символом ∅ и считывается как phi. В форме списка ∅ имеет написание {}. Пустым является конечное множество, так как число элементов 0. Например, набор целых значений меньше 0.
  2. Очевидно, что их не должно быть <0. Следовательно, это пустое множество.
  3. Набор, содержащий только одну переменную, называется одноэлементным множеством. Не является ни простым, ни составным.

Конечное множество

Множество, содержащее определенное число элементов, называется конечным либо бесконечным множеством. Пустое относится к первому. Например, набор всех цветов в радуге.

Бесконечное количество - это набор. Элементы в нем не могут быть перечислены. То есть, содержащий подобные переменные, называется бесконечным множеством. Примеры:

  • мощность множества всех точек в плоскости;
  • набор всех простых чисел.

Но стоит понимать, что все мощности объединения множества не могут быть выражены в форме списка. К примеру, вещественные числа, так как их элементы не соответствуют какой-либо конкретной схеме.

Кардинальный номер набора - это число различных элементов в заданном количестве A. Оно обозначается n (A).

Например:

  1. A {x: x ∈ N, x <5}. A = {1, 2, 3, 4}. Следовательно, n (A) = 4.
  2. B = набор букв в слове ALGEBRA.

Эквивалентные наборы для сравнения множеств

Две мощности множества A и B являются таковыми, если их кардинальное число одинаково. Символом для обозначения эквивалентного набора является «↔». Например: A ↔ B.

Равные наборы: две мощности множества A и B, если они содержат одни и те же элементы. Каждый коэффициент из A является переменной из B, и каждый из B является указанным значением A. Следовательно, A = B. Различные типы объединения множеств в мощности и их определения объясняются с помощью указанных примеров.

Сущность конечности и бесконечности

Каковы различия между мощностью конечного множества и бесконечного?

Для первого значения характерно следующее название, если оно либо пустое, либо имеет конечное число элементов. В конечном множестве переменная может быть указана, если она имеет ограниченный счет. Например, с помощью натурального числа 1, 2, 3. И процесс листинга заканчивается на некотором N. Число различных элементов, отсчитываемых в конечном множестве S, обозначается через n (S). А также называется порядком или кардинальным. Символически обозначается по стандартному принципу. Таким образом, если множество S является русским алфавитом, то оно содержит в себе 33 элемента. Также важно запомнить, что элемент не встречается более одного раза в наборе.

Бесконечное количество в множестве

Множество называется бесконечным, если элементы не могут быть перечислены. Если оно имеет неограниченное (то есть несчетное) натуральное число 1, 2, 3, 4 для любого n. Множество, которое не является конечным, называется бесконечным. Теперь можно обсудить примеры рассматриваемых числовых значений. Варианты конечного значения:

  1. Пусть Q = {натуральные числа меньше 25}. Тогда Q - конечное множество и n (P) = 24.
  2. Пусть R = {целые числа между 5 и 45}. Тогда R - конечное множество и n (R) = 38.
  3. Пусть S = {числа, модуль которых равен 9}. Тогда S = {-9, 9} является конечным множеством и n (S) = 2.
  4. Набор всех людей.
  5. Количество всех птиц.

Примеры бесконечного множества:

  • количество существующих точек на плоскости;
  • число всех пунктов в сегменте линии;
  • множество положительных целых чисел, кратных 3, является бесконечным;
  • все целые и натуральные числа.

Таким образом, из приведенных выше рассуждений понятно, как различать конечные и бесконечные множества.

Мощность множества континуум

Если провести сравнение множества и других существующих значений, то к множеству присоединено дополнение. Если ξ - универсальное, а A - подмножество ξ, то дополнение к A является количеством всех элементов ξ, которые не являются элементами A. Символически обозначается дополнение A относительно ξ как A". К примеру, 2, 4, 5, 6 являются единственными элементами ξ, которые не принадлежат A. Следовательно, A"= {2, 4, 5, 6}

Множество с мощностью континуум имеет следующие особенности:

  • дополнением универсального количества является пустое рассматриваемое значение;
  • эта переменная нулевого множества является универсальным;
  • количество и его дополнение являются непересекающимися.

Например:

  1. Пусть количество натуральных чисел является универсальным множеством и А - четное. То, тогда A "{x: x - множество нечетное с такими же цифрами}.
  2. Пусть ξ = множество букв в алфавите. A = набор согласных. Тогда A "= количество гласных.
  3. Дополнением к универсальному множеству является пустое количество. Можно обозначить через ξ. Тогда ξ "= Множество тех элементов, которые не входят в ξ. Пишется и обозначается пустое множество φ. Поэтому ξ = φ. Таким образом, дополнение к универсальному множеству является пустым.

В математике «континуум» иногда используется для обозначения реальной линии. И в более общем плане, для описания подобных объектов:

  • континуум (в теории множеств) - вещественная линия или соответствующее кардинальное число;
  • линейный - любое упорядоченное множество, которое разделяет определенные свойства реальной прямой;
  • континуум (в топологии) - непустое компактное связное метрическое пространство (иногда хаусдорфово);
  • гипотеза о том, что никакие бесконечные множества больше целых чисел, но меньшие, чем действительные числа;
  • мощность континуума - кардинальное число, представляющее размер множества действительных чисел.

По существу дела, континуум (измерение), теории или модели, которые объясняют постепенные переходы из одного состояния в другое без каких-либо резких изменений.

Проблемы объединения и пересечения

Известно, что пересечение двух или более множеств - это количество, содержащее все элементы, которые являются общими в этих значениях. Задачи Word на множествах решаются, чтобы получить основные идеи о том, как использовать свойства объединения и пересечения множеств. Решенные основные проблемы слов на множествах выглядят так:

  1. Пусть A и B - два конечных множества. Они представляют собой такие, что n (A) = 20, n (B) = 28 и n (A ∪ B) = 36, находится n (A ∩ B).

Связь в наборах с использованием диаграммы Венна:

  1. Объединение двух множеств может быть представлено заштрихованной областью, представляющей A ∪ B. A ∪ B, когда A и B - непересекающиеся множества.
  2. Пересечение двух множеств может быть представлено диаграммой Венна. С затененной областью, представляющей A ∩ B.
  3. Разность двух наборов может быть представлена диаграммами Венна. С заштрихованной областью, представляющей A - B.
  4. Связь между тремя наборами, использующими диаграмму Венна. Если ξ представляет универсальное количество, то A, B, C - три подмножества. Здесь все три набора являются перекрывающимися.

Обобщение информации о множестве

Мощность множества определяется как общее количество отдельных элементов в наборе. А последнее указанное значение описывается как количество всех подмножеств. При изучении подобных вопросов требуются методы, способы и варианты решения. Итак, у мощности множества примерами могут служить следующие:

Пусть A = {0,1,2,3}| | = 4, где | A | представляет мощность множества A.

Теперь можно найти свой набор мощности. Это тоже довольно просто. Как уже сказано, набор мощности установлен из всех подмножеств заданного количества. Поэтому нужно в основном определить все переменные, элементы и другие значения A, которые {}, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, { 2,3}, {0,1,2}, {0,1,3}, {1,2,3}, {0,2,3}, {0,1,2,3}.

Теперь мощность выясняет P = {{}, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}, {0,1,2}, {0,1,3}, {1,2,3}, {0,2,3}, {0,1,2,3}}, который имеет 16 элементов. Таким образом, мощность множества A = 16. Очевидно, что это утомительный и громоздкий метод решения этой проблемы. Однако есть простая формула, по которой, непосредственно, можно знать количество элементов в множестве мощности заданного количества. | P | = 2 ^ N, где N - число элементов в некотором A. Эта формула может быть получена применением простой комбинаторики. Таким образом, вопрос равен 2 ^ 11, поскольку число элементов в множестве A равно 11.

Итак, множеством является любое численно выраженное количество, которое может быть всевозможным объектом. К примеру, машины, люди, числа. В математическом значении это понятие шире и более обобщенное. Если на начальных этапах разбираются числа и варианты их решения, то в средних и высших стадиях условия и задачи усложнены. По сути, мощность объединения множества определена принадлежностью объекта к какой-либо группе. То есть один элемент принадлежит к классу, но имеет одну или несколько переменных.