Получение и очистка дисперсных систем. Методы очистки дисперсных систем Методы получения и очистки дисперсных систем

Так как низкомолекулярные примеси (чужеродные электролиты) способны разрушать коллоидные системы, полученные золи во многих случаях приходится очищать. Очищают также и дисперсные системы природного происхождения (латексы, сырую нефть, вакцины, сыворотки и т.д.). Для очистки от примесей используют: диализ, электродиализ, ультрафильтрацию.

Диализ – извлечение из золей низкомолекулярных веществ чистым растворителем с помощью полупроницаемой перегородки (мембраны), через которую не проходят коллоидные частицы. В настоящее время предложено много усовершенствованных конструкций диализаторов, обеспечивающих более быстрый процесс очистки. Интенсификация диализа достигается за счет: увеличением поверхности мембран; уменьшением слоя очищаемой жидкости; частой или непрерывной сменой внешней жидкости; повышением температуры.

Электродиализ – диализ, ускоренный применением внешнего электрического поля. Электродиализ обусловлен миграцией ионов через мембрану под действием приложенной разности потенциалов порядка 40 В/см.

Ультрафильтрация – электродиализ под давлением. По существу, ультрафильтрация является не методом очистки золей, а лишь методом их концентрирования.

Интересным примером сочетания диализатора и ультрафильтрации является аппарат «искусственная почка», предназначенный для временной замены функции почек при острой почечной недостаточности. Аппарат оперативным путем подключается к системе кровообращения больного. Кровь под давлением, создаваемым пульсирующим насосом («искусственное сердце») протекает в узком зазоре между двумя мембранами, омываемыми снаружи физиологическим раствором. Благодаря большой рабочей площади мембран (~ 15000 см 2) из крови сравнительно быстро (3-4 часа) удаляются «шлаки» – продукты обмена и распада тканей (мочевина, креатин, ионы калия и т.д.).

Применяя для ультрафильтров мембраны с определенной пористостью, можно в известной мере разделить по размерам коллоидные частицы и одновременно приближенно определить их размеры. Этим способом были определены размеры частиц ряда вирусов и бактериофагов.

Ультрафильтрацию используют для очистки сточных вод от механических примесей. Этим методом проводят отделение молекул жидкости от частиц коллоидной системы.

В зависимости от дисперсности сточных вод применяют те или иные разновидности фильтровальных перегородок. Для микрофильтрации больших количеств природной воды на водопроводных станциях при очистке преимущественно от планктона и микроорганизмов служат металлические сетки, в случае очистки от субмикронных частиц и макромолекул применяют полимерные мембраны с различным размером пор.


Вопросы и задания для самоконтроля

1. Что изучает дисциплина «Коллоидная химия»?

2. В чем отличие коллоидных растворов от истинных?

3. На каких признаках основан каждый тип классификации дисперсных систем?

4. Какие существуют методы получения дисперсных систем? В чем заключается суть каждого метода?

5. Каким образом можно очистить коллоидные системы? Зачем это нужно делать?

Глава 2
ТЕРМОДИНАМИКА
ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

В дисперсных системах большая часть всех молекул или атомов, составляющих вещество, находится на поверхности раздела фаз. Эти поверхностные молекулы отличаются от молекул, находящихся внутри фазы по своему энергетическому состоянию, что приводит к возникновению избыточной поверхностной энергии. Избыточная поверхностная энергия равна произведению поверхностного натяжения на площадь межфазной поверхности:

Любая термодинамическая система стремиться уменьшить свою поверхностную энергию. Избыточная поверхностная энергия может уменьшиться за счет:

· уменьшения поверхностного натяжения: адсорбция, адгезия, смачивание, образование двойного электрического слоя;

· уменьшения площади поверхности: сферическая форма капель (сглаживание поверхности), объединение частиц (коагуляция, агрегация, коалесценция).

  • III. Препараты, действующие на Рении-ангиотензнвную систему.
  • IV. Средства, понижающие активность глутаматергической системы
  • Коллоидные системы занимают промежуточное положение между грубодисперсными(эмульсии, суспензии)и молекулярными системами. Их получение связано с дроблением до требуемой дисперсности, либо с объединением молекул или ионов в агрегаты коллоидных размеров. Необходимо подобрать дисперсионную среду, в которой частицы не растворяются, и обеспечить устойчивость частиц. Существуют деспергационные и конденсационные методы получения дисперсионных систем.

    Диспергационные методы-это механические методы, к которым относятся дробление, истирание, вибрация, электрические методы.В них для накопления свободной поверхности энергии и преодоления межмолекулярных сил в процессе диспергирования, совершается внешняя механическая работа над системой. Твердые тела при этом раздавливаются, истираются, дробятся. В лабораторных и пром. Условиях процессы дробления производят в дробилках, жерновах и мельницах, чаще всего шаровых. Шаровая мельница состоит из полного цилиндрического барабана, частично заполненного шарами. Измельченный сухой материал помещается в этот цилиндр, где и происходит дробление.

    Конденсационные методы-Это процессы агрегатирования, укрепнения, которые делятся на физические и химические.

    Физическая конденсация связана с конденсацией из паров и замены растворителя. При этом из зародыша возникает новая фаза, путем соединения молекул, атомов, ионов. Метод замены растворителя основан на таком изменении параметров, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и образуется новая фаза.

    Химическая конденсация.Сущность заключается в конденсационном выделение новой фазы из пересыщенного раствора. Вещество новой фазы появляется в результате химической реакции. Реакция окисления, гидролиза, диссоциации, двойного обмена приводят к образованию дисперсных систем.

    Очистка дисперсионных систем.

    Полученные дисперсные системы очищают от примесных молекул или ионов. Очищают также естественные дисперсные системы (сырую нефть, вакцины, сыворотки) Наиболее важным методом очистки является диализ разработанный Грэмом. Коллоидный раствор наливают в сосуд с мембраной, отделяющий его от чистой дисперсионной среды. В результате диффузии все растворимые молекулярные компоненты через мембрану переходят во внешний раствор. Очистка длится несколько суток, для ускорения повышают температуру. Обычно диализ сочетается с ультрафильтрацией через те же мембраны, т.е. диализ ведут при повышенном давлении во внутренней камере.

    12. Оптические свойства дисперсных систем. При падении света на дисперсную систему могут наблюдаться следующие явления:
    1)прохождение света частицами дисперсной фазы;

    2)преломление света частицами дисперсной фазы (если эти частицы прозрачны);

    3)отражение света частицами дисперсной фазы (если частицы непрозрачны);

    4)рассеяние света;

    5)адсорбция (поглощение) света дисперсной фазой с превращением световой энергии в тепловую.

    Характер наблюдаемых явлений зависит от размеров частиц дисперсной фазы и их соотношения с длиной волны (λ) падающего света. Прохождение света наблюдается для прозрачных систем, в которых частицы много меньше длины волны падающего света (r<<λ). Преломление и отражение света наблюдается для систем, в которых частицы много больше длины волны падающего света (r>>λ). Визуально это явление выражается в мутности этих систем.

    Рассеяние света наблюдается для систем, в которых частицы дисперсной фазы меньше, но соизмеримы с длиной волны падающего света (r ≈ 0.1 λ). Именно такое соотношение выполняется для коллоидных растворов. В проходящем свете коллоидные системы прозрачны, а при боковом освещении рассеивают падающий на них свет, поэтому пучок людей в коллоидной системе виден как яркий светящийся конус

    Оптические свойства коллоидных систем используют при изучении размеров, формы, структуры и концентрации коллоидных частиц

    Гидрофобные золи при их образовании почти всегда «загрязняются» различными примесями, чаще всего электролитами. Особенно загрязняются золи, в которых в избытке введен стабилизатор. Чаще в системе присутствует исходный электролит. Для получения коллоидных растворов с наибольшей устойчивостью необходимо удалять из них примеси. Рассмотрим различные методы очистки золей.

    3.1 Диализ

    Диализ – это процесс освобождения коллоидных растворов от примесей, способных проникать через полупроницаемые мембраны. Этот метод очистки, предложенный еще Грэмом, является наиболее простым и доступным. Процесс очистки основан на способности примесных ионов и молекул малых размеров свободно проникать через полупроницаемые мембраны, тогда как крупные коллоидные частицы такой способностью не обладают.

    Полупроницаемыми являются различные растительные, животные и искусственные мембраны; их можно приготовить из пергамента, бычьего, свиного и рыбьего пузыря; из коллодия, целлофана и т.д. Приборы, в которых проводится диализ, называют диализаторами. На рис 20 изображен простейший диализатор Грэма.

    Рис 2 Схема простейшего диализатора

    тп - полупроницаемая перепонка (мембрана)

    В нем очищаемый золь контактирует с проточной дистиллированной водой через полупроницаемую мембрану. Чем больше разность концентраций по обе стороны мембраны, тем эффективнее идет диализ. Вот почему очистка золя ускоряется, если во внешней камере диализатора вода проточная или часто сменяется. Однако даже при этих условиях диализ идет очень медленно, длится иногда недели и даже месяцы и требует огромного количества растворителя. Для ускорения процесса диализа было предложено использовать электрический ток.


    3.2 Электродиализ

    Этот метод представляет собой ускоренный процесс диализа с применением электрического тока. В электродиализаторах различных конструкций имеется три камеры (рис.21) с внутренними стенками из полупроницаемых мембран. В среднюю камеру наливают коллоидный раствор, подлежащий очистке, а во внешние камеры растворитель – проточную воду. Во внешних камерах находятся электроды, на которые подается напряжение постоянного тока. При падении потенциала 20-50 в/см и более образуется направленное движение ионов к соответствующим электродам. Поскольку ионы свободно проходят через полупроницаемую перегородку, а коллоидно-дисперсные частицы не проходят, коллоидный раствор постепенно очищается от электролитов.

    Рис 3 Электродиализатор Паули; 1 – коллоидный раствор; 2 – электроды

    Продолжительность электролиза в отличие от простого диализа измеряется не днями, а лишь часами и минутами, причем затрата растворителя сведена до минимума. В настоящее время широкое применение метод электродиализа получил в биохимии и медицине, а также в народном хозяйстве.

    3.3 Компенсационный диализ или вивидиализ

    Для исследования биологических жидкостей Михаэлисом и Рона был предложен метод, позволяющий определять концентрацию тех или иных низкомолекулярных веществ, находящихся в свободном состоянии в коллоидных растворах.

    Сущность компенсационного диализа заключается в том, что жидкость в диализаторе омывается не чистым растворителем, а растворами с различными концентрациями определяемого вещества. Так, например, сахар в сыворотке крови, не связанный с белками, определяется путем диализа сыворотки против изотонического раствора, к которому прибавляют различные количества сахара. Концентрация сахара в солевом растворе при диализе не меняется лишь в том случае, если оно равно концентрации свободного сахара в сыворотке. Этот метод позволяет судить об истинных концентрациях веществ в исследуемых коллоидных растворах. Таким путем, например, было выявлено наличие глюкозы и мочевины в крови в свободном состоянии.

    Примерно на том же принципе основано прижизненное определение низкомолекулярных составных частей крови методом вивидиализа (вивидиффузия по Абелю). В концы перерезанного кровеносного сосуда вставляют стеклянные канюли, разветвленные части которой соединяются между собой трубочками из коллодия и вся система погружается в сосуд, заполняемый физиологическим раствором NaCL или водой. Было установлено, что аммиакаты в крови, так же как и глюкоза, могут находиться в свободном состоянии.

    На принципе компенсационного вивидиализа был сконструирован аппарат, получивший название «искусственной почки», при помощи которого можно освобождать кровь от продуктов обмена веществ и, следовательно, временно замещать функцию больной почки. Показаниями к применению «искусственной почки» является острая почечная недостаточность, например, при отравлении сулемой, сульфаниламидными препаратами, при уремии после переливания крови, при тяжелых ожогах, токсикозе беременности и т.п.

    3.4 Ультрафильтрация

    Ультрафильтрацией называют фильтрование коллоидного раствора через полупроницаемые мембраны, которые укрепляются в специальных ультрафильтрах на твердой пористой подкладке.


    Рис 5 Ультрафильтрация под давлением

    Применяя для ультрафильтров мембраны с определенной степенью пористости, можно в известной мере произвести разделение коллоидных частиц и одновременно приближенно определить их размеры. Этим методом впервые были определены размеры целого ряда вирусов и бактериофагов.

    В настоящее время методы ультрафильтрации иногда применяют в сочетании с электродиализом. Этот комбинированный метод получил название метода электроультрафильтрации. В таблице 4 дано сопоставление относительных скоростей очистки по различным методам при сравнимых условиях.

    Таблица 4

    Относительные скорости очистки растворов

    Как видим, метод электроультрафильтрации по скорости превосходит метод электродиализа. Идея этого метода впервые была высказана в 1913г. А.В.Думанским, который применил центрифугу для осаждения коллоидных частиц. За последние годы этот метод получил исключительно широкое применение в коллоидной химии. В ультрацентрифуге оседают не только коллоидные частицы гидрофобных коллоидов, но и молекулы белков и высокомолекулярных соединений. Данный метод используют для вычисления молекулярного веса высокомолекулярных соединений, для определения среднего радиуса коллоидных частиц.

    Диализ заключается в очистке коллоидных систем от ионов и молекул низкомолекулярных веществ в результате их диффузии в чистый растворитель через полупроницаемую перегородку (мембрану), через которую не проходят коллоидные частицы. Периодически или непрерывно сменяя растворитель в приборе для диализа – диализаторе (рис.15), можно практически полностью удалить из дисперсных систем примеси электролитов и низкомолекулярных неэлектролитов.

    Рис. 15. Схема диализатора:

    А – дисперсная система; Б – растворитель (вода); М – мембрана

    Недостатком метода является большая длительность процесса очистки (недели, месяцы).

    Электродиализ – это процесс диализа в условиях наложения постоянного электрического поля, под действием которого катионы и анионы приобретают направленное движение к электродам, и процесс очистки значительно ускоряется.

    Компенсационный или вивидиали з применяют тогда, когда необходимо освободиться лишь от части низкомолекулярных примесей. В этом случае растворитель заменяют раствором НМВ, которые необходимо оставить в коллоидном растворе.

    По принципу вивидиализа работает аппарат «искусственная почка» (АИП) (рис.16), применяемый при острой почечной недостаточности, которая может наступить в результате отравления, при тяжелых ожогах и т.п.

    Рис. 16. Схема аппарата «Искусственная почка»

    Аппарат для гемодиализа (прообраз АИП) создал амер. ученый Дж. Абель в 1913 году, а голландский ученый В.Колф в 1944 году впервые применил его на практике.

    Работа искусственной почки основана на принципе диализа веществ через полупроницаемую мембрану (целлофан) вследствие разницы их концентраций в крови и диализирующем растворе, который содержит основные электролиты крови и глюкозу в близких к физиологическим концентрациях и не содержит веществ, которые надо удалять из организма (мочевина, креатинин, мочевая кислота, сульфаты, фосфаты и др.). Белки, форменные элементы крови, бактерии и вещества с молекулярной массой более 30000 через мембрану не проходят. При гемодиализе, т. е. работе искусственной почки, кровь больного отсасывается через катетер (1) насосом (2) из нижней полой вены, проходит внутри камер из целлофановых листов диализатора (3), которые снаружи омываются диализирующим раствором, подаваемым другим насосом, и, частично очищенная, возвращается в одну из поверхностных вен. Гемодиализ проводится от 4 до 12 ч; в течение этого времени, чтобы кровь не свёртывалась, в неё вводят противосвёртывающие вещества (гепарин). При острой почечной недостаточности гемодиализ повторяют через 3–6 дней до восстановления функции почек; при хронической недостаточности, когда его необходимо проводить 2–3 раза в неделю в течение нескольких месяцев или лет, между лучевой артерией и поверхностной веной предплечья устанавливают тефлоновый шунт, с которым и соединяют искусственную почку. В этом случае кровь может поступать в диализатор без использования насоса.



    Ультрафильтрация – фильтрование дисперсной системы через полупроницаемую мембрану, пропускающую дисперсионную среду с низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы.

    Для ускорения процесса ультрафильтрации ее проводят, создавая разность давления на мембране, понижая давление под мембраной (создавая разрежение, вакуумируя) или повышая давление над мембраной. Для предотвращения разрыва мембраны ее помещают на твердую пористую пластинку (рис. 17).

    Введение…………………………………………………………стр. 3

    Основная часть

    1. Получение дисперсных систем………………………………стр. 5

    1.1. Диспергационные методы………………………………..стр. 5

    1.2. Конденсационные методы………………………………..стр. 7

    2. Очистка дисперсных систем………………………………..стр. 10

    Приложение………………………………………………………стр. 12

    Список использованной литературы……………………………стр.13

    Введение

    В коллоидной химии широко используются многие понятия из курса физической химии, в том числе фаза, гомогенная и гетерогенная системы.

    Фаза – часть системы одного состава, одинаковых физических свойств, ограниченная от других частей поверхностью раздела. Систему, состоящую из одной фазы, называют гомогенной. Гетерогенная система состоит из двух и более фаз. Гетерогенную систему, в которой одна из фаз представлена в виде частиц микроскопических размеров, называют микрогетерогенной. Гетерогенная система может содержать частицы значительно меньших размеров в сравнении с видимыми в оптический микроскоп. Такие частицы наблюдают с помощью ультрамикроскопа. Систему, содержащую столь малые частицы, называют ультрамикрогетерогенной . По предложению Оствальда и Веймарна, фазу, входящую в микрогетерогенную и ультрамикрогетерогенную систему в виде мелких частиц, называют дисперсной .

    Микрогетерогенные и ультрамикрогетерогенные системы – представители особого класса гетерогенных систем, называемых дисперсными системами .

    Коллоидная химия – это наука о свойствах гетерогенных высокодисперсных систем и о протекающих в них процессах.

    Обладая избытком свободной энергии, типичные высокодисперсные системы являются термодинамически неустойчивыми. Для них характерны самопроизвольные процессы, снижающие указанный избыток путем уменьшения дисперсности. При этом система, оставаясь неизменной по своему химическому составу, изменяет энергетические характеристики, а следовательно, и коллоидно-химические свойства. В рассматриваемых процессах, в отличие от химических, система проявляет неустойчивость, изменчивость, высокую лабильность, оставаясь в то же время «сама собой» (сохраняя состав).

    Все эти особенности – невоспроизводимость, структурообразование и лабильность – имеют огромное значение в процессе эволюции материи к наиболее высокоорганизованной ее форме – жизни. Потенциальные возможности жизненных процессов уже заключены, как в зародыше, в дисперсных системах, из которых построено живое вещество. Коллоидный уровень материи, надмолекулярный или высокомолекулярный, соответствующий «молекулярному уровню» в биологии, является необходимым и неизбежным звеном в процессе эволюции.

    Комплексные биологические проблемы, доминирующие в настоящее время в естествознании, решаются в значительной степени на основе физической химии дисперсных систем. Поэтому изучение коллоидной химии приобретает особенно важное и принципиальное значение для развития науки в настоящем и будущем.

    В данной работе рассматриваются основные способы получения и очистки дисперсных систем, которые классифицируют как золи с жидкой дисперсионной средой и твердой дисперсной фазой (золь [нем. Sole от solutio (лат.) ] - коллоидный раствор). По размеру частиц золи относят к коллоидно – дисперсному типу систем (10 -7 – 10 -9 м).

    Получение материалов с необходимыми свойствами во многих случаях включение в качестве технологических процессов образование (диспергационное или конденсационное) частиц дисперсной фазы и их коагуляцию в жидкой дисперсионной среде. С другой стороны, коагуляция и осаждение взвесей являются одним из этапов процессов водоочистки. Это относится не только к вредным бытовым взвесям и отходам различных технологических процессов, но и к специально получаемым золям гидроксидов металлов, которые вводят в воду для улавливания примесей ПАВ и ионов тяжелых металлов. Методы управления этими процессами основаны на применении общих закономерностей образования и разрушения дисперсных систем в сочетании с изучением их специфических свойств, в особенности способности к формированию пространственных дисперсных структур с характерными механическими свойствами. Эти коллоидно – химические явления лежат в основе многих геологических процессов, например, ведущих к формированию почвенного слоя, явившегося основой развития жизни на поверхности Земли.

    Основная часть

    1.Получение дисперсных систем.

    Известны два способа получения дисперсных систем. В одном из них тонко измельчают (диспергируют) твердые и жидкие вещества в соответствующей дисперсионной среде, в другом вызывают образование частиц дисперсионной фазы из отдельных молекул или ионов.

    Методы получения дисперсных систем измельчением более крупных частиц называют диспергационными. Методы, основанные на образовании частиц в результате кристаллизации или конденсации, называют конденсационными.

    1.1.Диспергационные методы.

    Эта группа методов объединяет прежде всего механические способы, в которых преодоление межмолекулярных сил и накопление свободной поверхностной энергии в процессе диспергирования происходит за счет внешней механической работы над системой. В результате твердые тела раздавливаются, истираются, дробятся или расщепляются, причем характерно это не только для лабораторных или промышленных условий, но и для процессов диспергирования, происходящих в природе (результат дробления и истирания твердых пород пол действием сил прибоя, приливно-отливные явления, процессы выветривания и выщелачивания и т.д.).

    В лабораторных и промышленных условиях рассматриваемые процессы проводят в дробилках, жерновах и мельницах различной конструкции. Наиболее распространены шаровые мельницы. Это полые вращающиеся цилиндры, в которые загружают измельчаемый материал и стальные или керамические шары. При вращении цилиндра шары перекатываются, истирая измельчаемый материал. Измельчение может происходить и в результате ударов шаров. В шаровых мельницах получают системы, размеры частиц которых находятся в довольно широких пределах: от 2 – 3 до 50 – 70 мкм. Полый цилиндр с шарами можно приводить в круговое колебательное движение, что способствует интенсивному дроблению загруженного материала под действием сложного движения измельчающих тел. Такое устройство называется вибрационной мельницей.

    Более тонкого диспергирования добиваются в коллоидных мельницах различных конструкций, принцип действия которых основан на развитии разрывающих усилий в суспензии или эмульсии под действием центробежной силы в узком зазоре между вращающимся с большой скоростью ротором и неподвижной частью устройства – статором. Взвешенные крупные частицы испытывают при этом значительное разрывающее усилие и таким образом диспергируются. Тип коллоидной мельницы, широко распространенный в настоящее время, изображен на рис. 1 (смотри приложение). Эта мельница состоит из ротора, представляющего конический диск 1, сидящий на валу 2, и статора 3. Ротор приводится во вращение с помощью специального расположенного вертикально мотора, совершающего обычно около 9000 об/мин. Рабочие поверхности ротора и статора 4 пришлифованы друг к другу и толщина щели между ними составляет около 0,05 мм. Грубая суспензия полается в мельницу по трубе 5 под вращающийся диск центробежной силой, развивающейся в результате вращений ротора, проталкивается через щель и затем удаляется из мельницы через трубу 6. При прохождении жидкости в виде тонкой пленки через щель взвешенные в жидкости частицы испытывают значительные сдвиговые усилия и измельчаются. Степень дисперсности полученной системы зависит от толщины щели и скорости вращения ротора: чем меньше зазор и больше скорость, тем больше сдвиговое усилие и следовательно, выше будет дисперсность.

    Высокой дисперсности можно достичь ультразвуковым диспергированием . Диспергируещее действие ультразвука связано с кавитацией – образованием и захлопыванием полостей в жидкости. Захлопывание полостей сопровождается появлением кавитационных ударных волн, которые и разрушают материал. Экспериментально установлено, что дисперсность находится в прямой зависимости от частоты ультразвуковых колебаний. Особенно эффективно ультразвуковое диспергирование, если материал предварительно подвергнут тонкому измельчению. Эмульсии, полученные ультразвуковым методом, отличаются однородностью размеров частиц дисперсной фазы.

    К диспергационным методам получения золей можно отнести метод Бредига , который основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. Метод электрораспыления был предложен Бредигом в 1898 г. Бредиг включал в цепь постоянного тока силой 5-10 А и напряжением 30-110 В амперметр, реостат и два электрода из диспергируемого металла. Электроды он погружал в сосуд с водой, охлаждаемый снаружи льдом. Схематическое устройство прибора, которым пользовался Бредиг, показано на рис. 2 (смотри приложение). При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облачко высокодисперсного металла. Для получения более стойкий золей в воду, в которую погружены электроды, целесообразно вводить следы стабилизирующих электролитов, например гидроокисей щелочных металлов.

    Более общее значение имеет способ Сведберга, в котором используется колебательный разряд высокого напряжения, приводящий к проскакиванию искры между электродами. Этим способом можно получать не только гидрозоли, но и органозоли различных металлов.