Тепловой насос своими руками. Самодельный тепловой насос из компрессора

Тепловой насос своими руками

С начала имелся только строющийся дом на 2,5 этажа. Площадь:

1 этаж 64 м2,

2 этаж 94 м2,

2,5 этаж 55 м2,

гараж 30 м2.

С самого начала был куплен б/у газогенерационный котёл на дровах мощностью 40 к.в. Но как подошло время инсталляции совсем меня перестала радовать перспектива заготовки дров, извечная борьба с мусором, да и по натуре я больше дервиш, могу запросто пару дней дома не появляться.

(Самодельный тепловой насос, газогенерационный котёл,Испаритель,компрессор,Конденсатор,самодельный тепловой насос,тепловой насос,Тепловой насос своими руками, альтернативная энергия)

И тогда я склонился к сжиженному газу. Замечу, что труба природного газа низкого давления проходит в 1,5 км от дома. Но плотность заселения у нас маленькая, и тянуть трубу ради меня одного + проект + инсталляция просто ввергает меня в ужас.

Ставить бочку на несколько кубов на участке я тоже не могу. Не хочется портить внешний вид. Решил установить пару шкафов с батареей 80-литровых пропановых баллонов из 6 штук в каждом.

Газовый оператор уверял, что сами приезжают, сами меняют, вы лишь только нам позвоните. К неудобствам относил лишь головную боль раз в три недели, а также возможность несанкционированного заезда газовой машины на мою бедующую брусчато-легковую стоянку, качения-волочения баллонов по ней же. В общем человеческий фактор. Но проблему разрешил случай:

Идея построить тепловой насос своими руками

Идею строительства теплового насоса вынашивал давно. Но камнем преткновения было однофазное электричество и допотопный счётчик на 20 ампер максимальной нагрузки. Поменять эклектическое питание на трёхфазное или прибавить мощность в нашем районе пока нет. Но неожиданно мне планово поменяли счётчик на новый, 40 амперный.

Прикинув, решил, что этого хватит на частичный обогрев (2,5 этаж я не планировал использовать зимой), взялся зондировать рынок тепловых насосов. Запрошенные в одной фирме цены (однофазные ТН на 12 киловат) заставили задуматься:

Thermia Diplomat TWS 12 к.в.ч. 6797 евро

Thermia Duo 12 к.в.ч. 5974 евро

Требовалось не менее 45 ампер на пусковой ток.

К тому же, так как планировалось брать теплосъём со скважинной воды, не было уверенности в дебете моей скважины. Чтобы не рисковать такой суммой решил собрать ТН сам, благо какие-то навыки были из жизни. Работал в бытность менеджером по распространению вентиляционно-кондиционерного оборудования.

Концепция самодельного теплового насоса:

Решил делать ТН из двух однофазных компрессоров по 24000 БТУ (7 кв.ч. по холоду). Так получался каскад общей тепловой мощностью 16-18 киловат при потреблении электричества при СОP3 около 4-4,5 киловат/часа. Выбор двух компрессоров был обусловлен меньшими стартовыми токами, так как их запуски думано не синхронизировать. А также поэтапность ввода в эксплуатацию. Пока обжит только второй этаж и хватит одного компрессора. Да и поэкспериментировав на одном, потом будет смелее доделать вторую секцию.

Отказался от использования пластинчатых теплообменников. Во первых, из соображения экономии, не хотелось выкладывать за Данфос по 389 евро за штуку. А во вторых, совместить теплообменник с ёмкостью теплоакомулятора, то есть, увеличив инерционность системы, убив тем самым двух зайцев. Да и не хотелось делать водоподготовку для нежных пластинчатых теплообменников, снижая тем самым КПД. А вода у меня плохая, с железом.

Первый этаж уже оснащён обвязкой тёплого пола с примерным шагом 15 см.



Второй этаж радиаторы (слава Богу, хватило скупости поставить их с 1,5 тепловым запасом ранее). Забор теплоносителя из скважины (12,5 м. Установлена на первый слой доломита. +5,9 замер на 03.2008). Утилизация отработанной воды в общедомовую канализацию (двух камерный отстойник + инфильтрационный грунтовый поглотитель). Принудительная циркуляция в контурах теплосъема.


Вот, принципиальная схема:


1. Компрессор (пока один).

2. Конденсатор.

3. Испаритель.

4. Терморегулирующий клапан (ТРВ)

От других устройств безопасности решено отказаться (фильтр-осушитель, смотровое окно, пресостат, ресивер). Но если кто видит смысл их использования, буду рад услышать советы!

Для расчёта системы скачал из Интернета программу расчёта CoolPack 1,46.

И неплохую программку по подбору компрессоров Copeland.

Компрессор:

Удалось закупить у старого знакомого холодильщика, мало б/у-шный компрессор от 7 киловатной сплит системы какого-то корейского кондиционера. Достался практически даром, да и не соврал, масло оказалось внутри совсем прозрачным, поработал всего сезон и был демонтирован в связи изменением концепции помещения заказчиком.


Компрессор оказался на мощность 25500 Бту, а это около 7,5 к.в. по холоду и около 9-9,5 по теплу. Что обрадовало, в корейском сплите стоял добротный компрессор американской фирмы Текумсет. Вот его данные:

Компрессор на R22 фреоне, а это значит чуть больший коэффициент полезного действия. Температура кипения -10с, конденсации +55с.

Ляпсус номер 1: По старой памяти думал, что на бытовых сплит системах ставятся только компрессоры Скрол типа (спиральные). Мой же оказался поршневым... (Выглядит чуть овальным и внутри болтается обмотка двигателя). Плохо, но не смертельно. К его минусам на четверть меньший ресурс, на четверть меньший коэффициент полезного действия, на четверть более шумный. Но ничего, опыт сын ошибок трудных.

Важно: Фреон R22 по Монреальскому протоколу полностью будет выведен из эксплуатации к 2030 году. С 2001 года запрещён ввод в эксплуатацию ввод новых установок (но я ввожу не новую, а модернизировал старую). С 2010 года использование R22-го фреона только бывшего в эксплуатации. НО в любой момент можно перевести систему с R22 на его заменитель R422. И не испытывать затруднений далее.

Закрепил компрессор на стене кронштейнами L-300мм. Если буду потом монтировать второй, удлиняю имеющиеся с помощью U-профиля.

2. Конденсатор:

У знакомого сварщика удачно приобрёл бак из нержавейки примерно на 120 литров.

(Кстати, все сварные манипуляции с баком безвозмездно произвел уважаемый сварщик. Но просил упомянуть и его скромную роль для истории!)

Было решено разрезать его на две части вставить змеевик из медной трубы фреоновода, и сварить его обратно. Заодно и вварить несколько технических дюймово-резьбовых соединений.

Формула расчёты площади поверхности трубы медного змеевика:

M2 = kW/0,8 x ?t

M2 - площадь трубы змеевика в квадратных метрах.

kW - Мощность тепловыделения системой (с компрессором) в киловатах.

0,8 - коофициент теплопроводности меди/воды при условии противотока сред.

T - разность температуры воды на входе и выходе системы (см. Схему). У меня это 35с-30с= +5 градусов Цельсия.

Так получается около 2 квадратных метров площади теплообмена змеевика. Я чуть уменьшил, так как температура на входе фреона около +82с градуса, на этом чуть можно сэкономить. Но как писал ранее Дед Морос , не более чем в размере 25% от размера испарителя!!!

Смоделированная системы в CoolPack показала Cop 2,44 на штатных диаметрах труб теплообменника. И Cop 2,99 при диаметре на шаг выше. А это мне и на руку, так как в будущем рассчитываю присоединить и второй компрессор на эту ветку. Решил использовать медную трубу ½’ дюйма (или 12,7 мм наружного диаметра), холодильную. Но, думаю, можно и обычную сантехническую, не так там и много грязи внутри будет.

Ляпсус номер 2: Использовал трубу со стенкой 0,8 мм. На деле она оказалась очень нежной, чуть передавил и уже она заминается. Сложно работать, тем более без особых навыков. Поэтому рекомендую брать трубу 1мм или 1,2 мм стенки. Так и по долговечности будет дольше.

Важно: Фреоновод змеевика входит в конденсатор сверху, выходит снизу. Так конденсируя жидкий фреон будет скапливаться внизу и уходит без пузырьков.

Взяв, таким образом, 35 метров трубы свернул её в змеевик, намотав на удобный цилиндрический предмет (баллон).

По краям зафиксировал витки двумя алюминиевыми рейками для прочности и равношаговости петель.



Концы вывел наружу с помощью сантехнических переходов на медную тубу на скрутку. Чуть рассверлит их с диаметра 12 на 12,7мм, и вместо обжимного кольца после сборки намотал льна на герметике и зажал контргайкой.

3. Испаритель:

Для испарителя не требовалось высокой температуры, и я выбрал пластмассовую ёмкость типа бочки на 127 литров с широкой горловиной.

Важно: Идеально подошла бы бочка на 65 литров. Но побоялся, труба ¾ очень плохо гнётся, поэтому взял размер побольше. Если у кого другие размеры или есть хороший трубогиб и навыки работы, то можно рискнуть и на этот размер. С бочкой 127 литров размеры моего ТН повысили ожидаемые габариты на 15 см вверх, 5 см в глубину и 10 см в ширину.

Рассчитал и изготовил испаритель по такому же принципу как и у конденсатора. Понадобилось 25 метров трубы ¾’ дюйма (19,2мм наружный) со стенкой 1,2мм. Как рёбра жёсткости использовал отрезки UD профиля для монтажа регипса. Скрутил обычной медной электротехнической проволокой без изоляции.

Важно: Испаритель затопленного типа. То есть жидкая фаза фреона заходит в охлаждаемую воду снизу, испаряется и в газообразном состоянии поднимается вверх к компрессору. Так лучше для теплопередачи.

Переходы можно взять пластмассовые от питьевой трубы PE 20*3/4’ с наружной резьбой, свинтив из с бочкой контргайками и уплотнением из льна и герметика. Подачу и сток воды сделал из обычных канализационных труб и резиновых уплотняющих манжет вставленных враспор.



Испаритель также был установлен на кронштейны L-400мм.



4. ТРВ:

Приобрёл ТРВ фирмы Honeywell (бывшая FLICA). На мою мощность потребовалась дюза к нему 3мм. И наличие выравнивателя давления.



Важно: ТРВ во время пайки нельзя перегреть выше +100с! Поэтому обматал его тряпочкой пропитанной водой для охлаждения. Прошу не ужасаться, после налёт почистил мелкой наждачной.

Припаял трубку линии выравнивания как положено к инструкции по монтажу ТРВ.



Сборка:

Прикупил комплект для жёсткой пайки Rotenberg. И электроды 3 штуки с 0% содержания серебра и 1 штуку с 40% содержания серебра для пайки в стороне компрессора (вибростойкий). С их помощью собрал всю систему.

Важно: Берите сразу баллон Максигаз 400 (жёлтый баллон)! Он не многим дороже Мультигаза 300 (красный), но производитель обещает до +2200с пламени. Но и этого недостаточно для ¾’ трубы. Паялось из рук вон плохо. Приходилось изловчаться, использовать тепловой экран, и т.д. В идеале конечно иметь кислородную горелку.

Да, и надо впаять в систему заправочный пипсик с ниппелем для подсоединения шланга. Не помню с головы его точное название.



Его впаял на входе в компрессор. Рядом же видна и входная труба выравнивателя ТРВ. Она впаивается после испарителя, термобаллона ТРВ, но до компрессора.

Важно: Заправочный пипсик паяем предварительно вывернув из него ниппель. Ни то от жары уплотнитель ниппеля однозначно выйдет из строя.

Редукционные тройники не использовал, так как боялся уменьшения надёжности от дополнительных паечных швов вблизи компрессора. Да и давление в этом месте не большое.



Заправка фреоном:

Собранную, но не заполненную водой систему надо вакуумировать. Лучше использовать вакуумный насос, если нет, то умельцы приспосабливают обычный компрессор от старого холодильника. Можно и просто, продуть-продавить систему фреоном выдавив воздух, но я вам этого не говорил, потому что так делать нельзя!

Баллон фреона самой небольшой ёмкости. Для системы вообще не нужно будет более 2 кг. фреона. Но чем богаты.

Также я приобрёл манометр для замера давления. Но не специальный фреоновый за 10 у.е., а обычный для насосной станции за 3,5 у.е. По нему и ориентировался при заполнении.

Заправил систему, на сколько возможно с помощью внутреннего давления фреона в баллоне. Дал постоять пару дней, давление не упало. Значит, утечки нет. Дополнительно промазал все соединения мыльной пеной, не пузырило.

Важно: Так как в моём случае заправочный ниппель впаян сразу перед компрессором (в дальнейшем будет замеряться давление в этом месте при настройке) ни в коем случае не заправлять систему с работающим компрессором жидким фреоном. Компрессор наверняка выйдет из строя. Только газообразной фазой - баллоном вверх!

Автоматика:

Необходимо однофазное пусковое реле, и при этом, на очень приличный пусковой ток около 40 А! Автоматический предохранитель С группы на 16А. Электрический щиток с DIN рейкой.

Также установил два реле температуры с копелярными термодатчиками. Один поставил на воду на выходе из конденсатора. Выставил примерно на 40 градусов, чтобы отключал систему при достижении водой этой температуры. И на выход воды из испарителя на 0 градусов, чтобы аварийно отключал систему и не разморозил её случаем.

В будущем думаю приобрести простейший контроллер, который учитывает эти две температуры. Но кроме внешнего вида и наглядности пользования у него есть и недостаток - запрограмированные значения сбиваются при даже кратковременном перебои электроснабжения. Пока в раздумьях.



Запуск (пробный):

Перед запуском напумповал в систему примерно 6 бар давления из баллона. Больше не получалось, да и незачем. Кинул временный провод, подсоединил пусковой конденсатор. Наполнил ёмкости водой предварительно. Они постояли с сутки, наполненные и потому, на момент запуска имели комнатную температуру около +15с.

Торжественно включил автомат. Его сразу же выбило. Ещё, то же самое. В этот небольшой промежуток слышно как двигатель гудит, но не запускается. Перебросил клеммы на конденсаторе (их почему-то три). Включил снова автомат. Приятный рокот работающего компрессора приласкал мой слух!!!

Давление на всасывании сразу упало до 2 бар. Открыл баллон с фреоном, чтобы система заполнялась. По табличке рассчитал необходимое давление кипения фреона.

Для моих необходимых на входе +6 и выходе воды +1, требуется температура кипения -4с. Фреон кипит при такой температуре при давлении 4,3 кг.см. (бар) (атмосфер). Таблицу можно найти и в Интернете.

Как не пытался выставить точное это давление, ничего не получалось. Система пока ещё не выведена на рабочий режим температур. Потому преждевременные регулировки лишь примерны.

Через минут пять подача достигла примерно +80 градусов. Пока не изолированная труба испарения покрылась лёгким инеем. Вода в конденсаторе через минут десять на ощупь уже нагрелась до +30 - +35. Вода в испарителе приблизилась к 0с. Чтобы чего не разморозить отключил систему.

Резюме: Пробный запуск показал полную работоспособность системы. Аномалий не замечено. Потребуется дальнейшие регулировки ТРВ и давления фреона после подключения контура отопления и охлаждения скважинной водой. Поэтому продолжение фоторепортажа и отчёта примерно через две-три недели , когда разберусь с этой частью работы.

К тому моменту, думаю:

1. Подсоединить контур обогрева помещений и контур теплообмена скважинной водой.

2. Произвести полный цикл пусконаладочных работ.

3. Изготовить какой-то корпус.

4. Сделать выводы и дать небольшое резюме.

Важно: ТН получился не такой уж маленький по размерам. Применив за место ёмкостных теплообменников пластинчатые, можно очень сильно сэкономить пространство.

Затраты на изготовление Теплового насоса примерной мощностью 9 киловат час по теплу:

Конденсатор:

Бак нержавейка 100 литров - 25 у.е.

Электроды нержавейка - 6 у.е.

Муфты нержавейка - 5 у.е.

Услуги сварщика (обед) - 5 у.е.

Медная труба 12,7 (1/2”)*0,8мм. 35 метров - 105 у.е.

Медная труба 10*1 мм. 1 метр - 3 у.е.

Отвоздушиватель Ду 15 - 5 у.е.

Предохранительный клапан 2,5 бар - 4 у.е.

Кран сливной Ду 15 - 2 у.е.

Итого: 163 у.е. (к сравнению, пластинчатый теплообменник Данфос 389 у.е)

Испаритель:

Бочка пласм. 120 литров - 12 у.е.

Медная труба 19.2 (3/4”)*1.2мм. 25 метров - 130 у.е.

Медная труба 6*1мм. 1 метр - 2 у.е.

Терморегулирующий вентиль Honeywell (дюза 3мм.) - 42 у.е.

Кронштейны L-400 2 штуки - 9 у.е.

Кран сливной Ду 15 - 2 у.е

Переходы на медь (комплект) - 3 у.е.

РВС труба 50-1м. 2 штуки - 4 у.е.

Резиновые переходы 75*50 2 штуки - 2 у.е.

Итого: 206 у.е. (к сравнению, пластинчатый теплообменник Данфос 389 у.е)

Компрессор:

Компрессор мало б/у 7,2 к.в. (25500 бту) - 30 у.е.

Кронштейны L-300 2 штуки - 8 у.е.

Фреон R22 2 кг. - 8 у.е.

Комплект монтажный - 4 у.е.

Итого: 50 у.е.

Монтажный комплект:

Паяльная лампа ROTENBERG (комплект) - 20 у.е.

Электроды жёсткой пайки (40% серебра) 3 штуки - 3,5 у.е.

Электроды жёсткой пайки (0% серебра) 3 штуки - 0,5 у.е.

Манометр для фреона 7 бар - 4 у.е.

Шланг заправочный - 7 у.е.

Итого: 35 у.е.

Автоматика:

Реле пускателя однофазное 20 А - 10 у.е.

Щиток электрический встраиваемый - 8 у.е.

Предохранитель однофазный С16 А - 4 у.е.

Итого: 22 у.е.

Итого в целом 476 у.е.

Важно: Потребуются на следующем этапе ещё циркуляционные насосы Calpada 25/60-180 60 у.е. и Calpeda 32/60-180 78 у.е. Они хоть и будут вынесены за приделы моего котла, но обычно относятся к самому котлу.

Тепловой насос, альтернативная энергия, отопление, энергосбережение, тепловой насос воими руками, самодельный тепловой насос

Сегодня мало кто сомневается в том, что тепловой насос для отопления дома – самое эффективное средство из всех существующих. Оно же - самое дорогое и сложное в исполнении. По этой причине многие домашние умельцы взялись за самостоятельное решение данной проблемы. Но ввиду ее высокой сложности достижение положительных результатов дается весьма непросто, нужно иметь энтузиазм, терпение и вдобавок хорошо изучить теорию. Наша статья для тех, кто делает первый шаг на пути внедрения у себя дома такого альтернативного источника энергии, как тепловой насос, сделанный своими руками.

Устройство и принцип работы

Для сборки действующей модели теплового насоса не обойтись без знания теории, а точнее, принципа действия этого устройства. Хотелось бы изначально отметить, что утверждения о КПД в 300, 500 и 1000% - это миф или просто маркетинговый ход, рассчитанный на незнание рядовым пользователем законов физики. Так вот, тепловой насос – это устройство, берущее тепловую энергию в одном месте и перемещающее ее в другое с определенным КПД, не превышающим 100%. В отличие от котельных установок, он самостоятельно тепло не производит.

Примером могут служить домашние холодильники и кондиционеры, чья конструкция основана на так называемом цикле Карно, его же использует принцип работы теплового насоса для отопления или ГВС. Суть этого цикла заключается в движении вещества (рабочего тела) по замкнутой системе и меняющего свое агрегатное состояние с жидкого на газообразное и наоборот. В момент перехода выделяется или поглощается огромное количество энергии.

Чтобы пояснить на более доступном языке, перечислим основные элементы, которые включает в себя устройство теплового насоса:

  • компрессор;
  • теплообменник, где рабочее тело переходит в газообразное состояние (испаритель);
  • теплообменник, в котором рабочее тело конденсируется (конденсатор);
  • расширительный (редукционный) клапан;
  • средства управления и автоматики;
  • магистрали из медных трубок.

В качестве рабочего тела выступает вещество, закипающее при низких температурах – фреон. Циркулируя по трубке в виде жидкости, первым делом он попадает в испаритель. После взаимодействия с теплоносителем от внешнего источника (воздух, вода, грунт) рабочее тело испаряется и продолжает свое движение в виде газа. На этом участке давление в системе - низкое. Всю цепочку цикла отражает принципиальная схема теплового насоса:

Пройдя компрессор, фреон под давлением движется ко второму теплообменнику, где ему предстоит сконденсироваться и передать полученное тепло воде, снова приняв жидкое состояние. Далее, рабочее тело попадает в расширительный клапан, давление снова падает и оно продолжает свой путь к испарению. Цикл завершен.

Заводские теплонасосы для жилого дома способны выдавать теплоноситель с температурой 55-60 ºС, этого достаточно для обогрева помещений радиаторами либо теплыми полами. При этом вся система отопления затрачивает электроэнергию на такие цели:

  • питание компрессора;
  • вращение роторов циркуляционных насосов наружного и внутреннего контура;
  • питание средств автоматики и контроля.


Получается, что при потреблении 1 кВт электричества действие теплового насоса может переместить в дом до 5 кВт тепловой энергии извне, отсюда и небылицы о КПД 500%.

Тепловой насос воздух-воздух

Теоретически любая среда, имеющая температуру выше абсолютного нуля (минус 273 ºС), обладает запасом тепловой энергии. А значит, ее можно извлечь, уж тем более это нетрудно сделать при температуре окружающего воздуха минус 10-30 ºС.


Для этой цели служит тепловой насос воздух-воздух, отнимающий тепло у наружной окружающей среды и перемещающий его внутрь частного дома. Это самый доступный способ по цене оборудования и стоимости монтажа, он же – наименее эффективный. Чем крепче мороз на улице, тем меньше тепла удается получить. Принцип действия системы показан на рисунке:


Наружный блок воздушного теплового насоса внешне похож на такой же агрегат сплит-системы, только внутри у него нет компрессора. Остается лишь пластинчатый теплообменник и вентилятор, чьей задачей является повысить интенсивность процесса путем нагнетания через пластины большого количества воздуха.

Тепловой насос вода-вода

Более эффективным вариантом считается тепловой насос вода-вода. Он извлекает тепловую энергию из ближайшего водоема, если таковой есть на расстоянии до 100 м от дома. Другой, более распространенный способ – отбор тепла у грунтовых вод через скважину. По сути, скважин нужно 2: одна для выкачивания воды, другая – для ее сброса. Ниже представлены схемы тепловых насосов, действующих по такому принципу:


Здесь есть свои нюансы. Вода из скважины должна проходить очистку перед попаданием теплообменник, а трубы надо прокладывать ниже глубины промерзания грунта. Другое дело – контур на дне водоема, он заполняется незамерзающей жидкостью (пропиленгликолем), что служит посредником между водой и хладагентом.


Важно. Способность обеспечить частный дом тепловой энергией в этом случае зависит от производительности скважины и объема воды в пруде. Также существуют варианты погружения внешнего контура в проточную воду реки или канализационный септик.

Также существуют геотермальные тепловые насосы, чей принцип работы не отличается от предыдущих типов аппаратов, только тепло извлекается из грунта на глубине, где температура всегда одинакова – плюс 7 ºС. Для этого в землю закапывается горизонтальный контур из труб, занимающий большую площадь, либо в скважины глубиной 25 м опускаются геотермальные зонды. В обоих случаях в качестве теплоносителя используется антифриз.

Считается, что работа теплового насоса, добывающего тепло из грунта, - самая стабильная и эффективная. Но покупка и монтаж подобного оборудования очень дороги, а домашние мастера-умельцы редко прибегают к реализации этого варианта.

Как собрать тепловой насос в домашних условиях?

Поскольку термодинамический расчет теплового насоса представляет для большинства домашних мастеров - самодельщиков немалую сложность, приводить его здесь мы не будем. Наша задача – представить несколько действующих моделей, чтобы любой энтузиаст мог взять какую-нибудь из них за основу для создания собственного детища.

Необходимо отметить, что тепловой насос, придуманный и собранный своими руками, для подавляющего большинства рядовых пользователей останется недостижимой мечтой, если не приложить к его изготовлению массу усилий и времени.

Простейший тепловой насос из старого холодильника был описан в статье журнала «Инженер» за 2006 г. Он позиционируется, как нагреватель воздух – воздух для небольшого помещения или теплицы. Кстати, какой бы ни был мощный бытовой холодильник, на обогрев даже небольшого дома его не хватит, а вот на 1 комнатку – вполне. Решение реализуется 2 способами, причем внутренняя автоматика отключения демонтируется и все агрегаты соединяются напрямую для непрерывной работы. В первом случае старый холодильник находится в помещении, конструкция насоса показана на схеме:

Снаружи к нему прокладывается 2 воздуховода и врезается в переднюю дверку. Воздух по верхнему каналу попадает в морозилку, охлаждается и опускается к нижнему воздуховоду из-за увеличения плотности. Затем он покидает корпус холодильника, вытесняемый верхним потоком. Помещение прогревается от теплообменника, расположенного на задней стенке агрегата. По второму способу сделать своими руками тепловой насос так же просто, надо лишь встроить холодильник в наружную стену, как изображено на схеме:

Самодельный обогреватель из холодильника может функционировать до наружной температуры минус 5 ºС, не ниже.

Тепловой насос из кондиционера

Современные сплит-системы, особенно инверторного типа, успешно выполняют функции того же теплового насоса воздух – воздух. Их проблема в том, что эффективность работы падает вместе с наружной температурой, не спасает даже так называемый зимний комплект.

Домашние умельцы подошли к вопросу иначе: собрали самодельный тепловой насос из кондиционера, отбирающий теплоту проточной воды из скважины. По сути, от кондиционера тут используется только компрессор, иногда – внутренний блок, играющий роль фанкойла.

По большому счету, компрессор можно приобрести отдельно. К нему потребуется сделать теплообменник для нагрева воды (конденсатор). Медная трубка с толщиной стенки 1-1.2 мм длиной 35 м наматывается для придания формы змеевика на трубу диаметром 350-400 мм или баллон. После чего витки фиксируются перфорированным уголком, а затем вся конструкция помещается в стальную емкость с патрубками для воды.


Компрессор из сплит-системы присоединяется к нижнему вводу в конденсатор, а к верхнему подключается регулирующий клапан. Таким же образом изготавливается испаритель, для него сгодится обычная пластиковая бочка. Кстати, вместо самодельных емкостных теплообменников можно использовать заводские пластинчатые, но это обойдется недешево.

Сама по себе сборка насоса не слишком сложна, но здесь важно уметь правильно и качественно пропаивать соединения медных трубок. Также для заправки системы фреоном потребуются услуги мастера, не станете же вы специально покупать дополнительное оборудование. Дальше – этап наладки и пуска теплового насоса, который далеко не всегда проходит удачно. Возможно, придется немало повозиться, чтобы добиться результата.


Заключение

Конечно, отопление дома тепловым насосом – мечта многих домовладельцев. К сожалению, стоимость установок слишком высокая, а справиться с собственноручным изготовлением могут единицы. И то зачастую мощности хватает лишь на ГВС, об отоплении речь не идет. Если бы все было так просто, то у нас в каждом доме стоял самодельный тепловой насос, а пока что он остается недоступным широкому кругу пользователей.

– инновационное устройство, относящееся к альтернативным источникам энергии. Извлекая тепло из природных ресурсов вокруг, прибор является экономичным устройством с большой степенью автономности.

Характеристики

На отоплении и водоснабжении частного дома хочется сэкономить большинству рачительных хозяев. Для таких целей подходит тепловой насос.

Его вполне возможно соорудить своими руками, хорошо при этом сэкономив − заводской прибор стоит очень недешево.

Свойства и устройство

Прибор имеет внешний и внутренний контур, по которым движется теплоноситель. Составляющие стандартного прибора: тепловой насос, устройство для забора и устройство для распределения тепла. Контур изнутри состоит из компрессора с питанием от сети, испарителя, дроссельного клапана, конденсатора. Используют также в приборе вентиляторы, систему труб, геотермальные зонды.


Преимущества теплонасоса:

  • не выделяет никаких вредных веществ, абсолютно экологичный;
  • нет затрат на покупку и доставку топлива (электроэнергия затрачивается только на перемещение фреона);
  • нет необходимости дополнительных коммуникаций;
  • абсолютно пожаро - и взрывобезопасный;
  • полноценное отопление зимой и кондиционер летом;
  • сооруженный тепловой насос своими руками – это автономная конструкция, требующая минимум усилий по управлению.

Применение

Теплонасос, собранный своими руками, подойдет для таких случаев:


  • если есть желание сэкономить на топливе для обогрева дома;
  • если к дому невозможно подвести газ или сделать это слишком хлопотно, когда покупать баллонный газ – не выход из ситуации;
  • нет желания и возможностей топить углем, дровами, электричеством, иным топливом;
  • если хозяин дома является приверженцем использования экологически чистой альтернативной энергии. Устройство достаточно практичное даже наряду с наличием возможностей применять другие источники энергии.

Тепловой насос своими руками изготовляется для дома, основываясь на технологиях забора тепла из земли, воды, воздуха. Он используется для отопления, нагрева воды и даже кондиционирования внутри помещения.

Принцип работы

Все окружающее нас пространство есть энергия - нужно только уметь ее использовать. Для теплового насоса нужно, чтобы температура окружающей среды была больше 1С°. Тут следует сказать, что даже земля зимой под снегом или на некоторой глубине сохраняет тепло. Работа геотермального или любого другого теплонасоса основывается на транспортировке тепла от его источника с помощью теплоносителя к контуру отопления дома.


Схема работы прибора по пунктам:

  • носитель тепла (вода, грунт, воздух) наполняет находящийся под грунтом трубопровод и нагревает его;
  • затем теплоноситель транспортируется в теплообменник (испаритель) с последующей передачей тепла на внутренний контур;
  • во внешнем контуре находится хладагент – жидкость с низкой точкой кипения под низким давлением. Например, фреон, вода со спиртом, гликолевая смесь. Внутри испарителя это вещество нагревается и становится газом;
  • газообразный хладагент направляется в компрессор, сжимается под высоким давлением и нагревается;
  • горячий газ попадает в конденсатор и там его тепловая энергия переходит к дома;
  • завершается цикл превращением хладагента в жидкость, и она, вследствие потери тепла, возвращается назад в систему.


Тот же принцип используется для холодильников, поэтому тепловые насосы для дома можно применять как кондиционеры для охлаждения помещения. Проще говоря, тепловой насос – это такой холодильник с обратным действием: вместо холода вырабатывается тепло.

Виды

Тепловые насосы своими руками можно сконструировать на основе трех принципов - по источнику энергии, теплоносителю и их комбинации. Источником энергии может быть вода (водоем, река), грунт, воздух. Все виды насосов основаны на одном принципе работы.

Классификация

Выделяют три группы устройств:


  • вода-вода;
  • грунтово-водяные (геотермальные тепловые насосы);
  • используют воду и воздух.

Тепловой коллектор «грунт-вода»

Тепловой насос своими руками - самый распространенный и эффективный способ добычи энергии. На глубине нескольких метров грунт имеет одну постоянную температуру и мало подвержен погодным условиям. На внешнем контуре такого применяется специальная экологически безопасная жидкость, в народе называемая «рассолом».


Наружный контур геотермального насоса создают из пластиковых труб. Их вкапывают в грунт вертикально или горизонтально. В первом случае на один киловатт может понадобиться достаточно значительная площадь работ – 25–50 м2. Площадь нельзя использовать для посадочных работ - тут допускается только высадка однолетних цветущих растений.

Вертикальный коллектор энергии требует несколько скважин на 50–150 м. Такое устройство более эффективное, тепло передают специальные глубинные зонды.

На большой глубине температура воды постоянная и стабильная. Источником низкопотенциальной энергии может служить открытый водоем, грунтовые воды (колодец, скважина), сточные воды. Принципиальных различий в конструкции для отопления такого типа с разными теплоносителями нет.


Устройство «вода-вода» наименее трудозатратное: достаточно оснастить трубы с носителем тепла грузом и поместить в воду, если это водоем. Для грунтовых вод потребуется более сложная конструкция и может возникнуть нужда в сооружении колодца под сброс воды, проходящей через обменник тепла.

«Воздух-вода»

Такой насос немного уступает двум первым и в холодное время его мощность снижается. Но он более универсальный: для него не нужно копать землю, создавать скважины. Нужно только установить необходимое оборудование, например, на крыше дома. Для этого не требуется сложных монтажных работ.


Основным преимуществом является возможность повторно использовать тепло, покидающее помещение. Зимой рекомендуют иметь еще один источник тепла, поскольку мощность такого обогревателя может значительно уменьшиться.

Этапы монтажа

Тепловой насос своими руками можно сделать полностью из старых запчастей, взятых, например, из нерабочего кондиционера.

Расходы, окупаемость, мощность

Заводской прибор стоит около 4000 евро и выше. Самодельный насос для отопления 100 м² площади окупится приблизительно по прошествии 2-х лет. Для домов с не очень хорошей теплоизоляцией мощность должна быть 75 Вт/м²., с хорошей теплоизоляцией достаточно - 50 Вт/м², а при использовании современных теплоизоляционных материалов - хватит и 30 Вт/м².


Идеальным вариантом будет, когда насос включается в проект для отопления дома с наличием теплого пола и плиточного покрытия.

Процесс создания

Сначала нужно достать компрессор от нерабочего кондиционера, необязательно нового. Дешевле будет приобрести его в мастерских по ремонту холодильников. Компрессор крепится к стене кронштейнами (подойдет L-300).


Для изготовления конденсатора подойдет бак из нержавейки на 100–120 л. Он разрезается пополам, внутри устанавливается змеевик. Змеевик можно изготовить самому из сантехнической или от холодильника. Тут нужны толстые стенки – от 1 мм и больше. Трубка наматывается на обычный баллон (газовый, кислородный) с равномерным расстоянием между витками и фиксируется в таком положении перфорированным алюминиевым уголком (им оформляются углы под шпаклевкой). Он приматывается к змеевику, чтобы каждый виток располагался против дырки в уголке.

В результате будет ровный шаг витков и прочность конструкции. После создания змеевика половинки емкости свариваются. Резьбовые соединения также ввариваются. Затем создается испаритель. Для него может подойти обычная пластиковая емкость на 60–80 л. с вмонтированным внутри змеевиком из трубы диаметром ¾ дюйма. Простые трубы для водопровода используют для транспортировки воды.

Испаритель крепится на стене L-кронштейном. А вот закачку фреона должен сделать специалист по холодильному оборудованию: он сварит трубки и закачает в них фреон. После чего конструкцию подключают к системе отопления внутри дома, а затем – к наружному контуру.

Особенности для каждого вида

Вертикальный насос для отопления «грунт-вода» требует создания скважины на 50–150 м. В нее помещаются геотермальные зонды и подключаются к насосу. Зонды берут тепло из грунта, которое переносится с незамерзающей водой к насосу, а оттуда уже в систему отопления. Для маленьких участков подходят зонды, для больших – горизонтальный коллектор.

Для горизонтального аппарата типа «грунт-вода» нужно создать коллектор из системы труб. Его располагают ниже уровня промерзания (1–1,5 м) и выглядит он как своеобразный змеевик под землей. Снимается слой почвы, укладываются трубы и грунт засыпается обратно. Можно уложить трубы в отдельных траншеях.


Для агрегата по типу «вода-вода» собирается из ПНД-труб, которые заполняются носителем тепла и после этого переносятся к водоему. Трубы имеют вид большого змеевика на дне водоема. Желательно разместить их в его центре.

Аппарат типа «воздух-вода» не требует трудоемких земляных работ. Выбирается место около дома или на его крыше, где самодельный тепловой насос соединяется с внутридомовым отоплением. Тепло извлекается вентиляторами и испарителем.

Человечество с древнейших времен «привыкло» использовать доступные природные энергоносители, которые попросту сжигаются для получения тепла или для преобразования в иные виды энергии. Научились люди применять и скрытый потенциал водных потоков – начали от водяных мельниц и дошли до мощных гидроэлектростанций. Однако то, что казалось вполне достаточным еще сотню лет назад, сегодня уже никак не может удовлетворить потребности растущего населения Земли.

Во-первых, природные «кладовые » все же не бездонны, и добыча энергоносителей с каждым годом становится все сложнее, перебираясь в труднодоступные регионы или даже на морские шельфы. Во-вторых, сжигание природного сырья всегда сопряжено с выбросами продуктов сгорания в атмосферу, что при нынешних громадных объемах таких выбросов уже поставило планету на грань экологического бедствия. Энергии гидроэлектростанций недостаточно, да и нарушение гидрологического баланса рек также влечет массу негативных последствий. Ядерная энергетика, на которую некогда смотрели, как на «панацею», после целого ряда резонансных техногенных катастроф вызывает массу вопросов, а во многих регионах планеты строительство АЭС просто запрещено законодательно.

Однако, есть и другие, практически неиссякаемые источники энергии, которые стали широко использоваться сравнительно недавно. Современные технологии позволили весьма эффективно применять для получения электричества или тепла энергию ветра, солнечного света, океанских приливов и т.п . Одним из альтернативных источников является и тепловая энергия земных недр, водоемов , атмосферы. Именно на использовании таких источников основана работа тепловых насосов. Подобное оборудования для нас пока еще входит в разряд «экзотических новинок», а в то же время именно таким способом отапливают свое жилье очень многие жители Европы – например, в Швейцарии или странах Скандинавии количество домов с подобными системами перевалило за 50%. Постепенно начинает такой вид получения тепла практиковаться и на российских просторах, хотя цены на приобретения высокотехнологичного комплекта оборудования пока выглядят очень пугающими. Но, как всегда, находятся мастера-энтузиасты, которые проявляют свои творческие способности и собирают тепловые насосы своими руками.

Публикация нацелена на то, чтобы читатель смог поближе рассмотреть принцип действия и базовое устройство тепловых насосов, узнать о тих преимуществах и недостатках. Кроме того, будет рассказано об успешных опытах создания действующих установок своими силами.

Не все об этом задумывались, но вокруг нас – немало источников тепла, которые «работают» круглогодично и круглосуточно. Для примера – даже в самые сильные холода температура подо льдом замерзшего водоема все равно остается положительной. Та же картина и при углублении в толщу грунта – ниже границы его промерзания температура практически всегда стабильна и примерно равна среднегодовой, характерной для данного региона. Немалый тепловой потенциал несет в себе и воздух.

Возможно, кого-то смутят совсем, казалось бы, невысокие температуры воды, грунта или воздуха. Да, они относятся к низкопотенциальным источникам энергии, но их главный «козырь» — стабильность, а современные технологии, основанные на законах теплофизики, позволяют даже незначительную разницу преобразовывать в необходимый нагрев. Да и, согласитесь, когда на улице зимой стоит мороз в 20 градусов, а ниже уровня промерзания грунт имеет 5 ÷ 7 градусов, то такой амплитудный перепад — уже весьма приличен.

Именно это свойство непрерывности поступления низкопотенциальной энергии заложено в схему теплового насоса. По сути, этот агрегат является устройством, который «перекачивает» и «концертирует» тепло, забираемое из неиссякаемого источника.

Можно провести некую аналогию со всем знакомым холодильником. Продукты, которые в него укладываются для охлаждения и хранения и попадающий в камеру при открытии дверцы воздух – тоже имеют не слишком высокую температуру. Но если прикоснуться к теплообменной решетке конденсатора на задней стенке холодильника, то она или очень теплая , или даже горячая.

Прообраз теплового насоса — знакомый всем холодильник, решетка конденсатора которого при работе нагревается.

Так почему бы не использовать этот принцип для нагрева теплоносителя?Конечно с холодильником аналогия не прямая – там нет стабильного внешнего источника тепла, и по большей мере тратится электроэнергия. Но в случае с тепловым насосом такой источник можно найти (организовать), и тогда это получится «холодильник наоборот » — основная направленность агрегата будет именно на получение тепла.

По какому принципу работает тепловой насос?

Он представляет собой систему из трех контуров с циркулирующими по ним теплоносителями.

  • В самом корпусе теплового насоса (поз . 1) размещены два теплообменника (поз . 4 и 8), компрессор (поз . 7), контур циркуляции хладагента (поз . 5), приборы регулировки и управления.
  • Первый контур (поз. 1) с собственным циркуляционным насосом (поз. 2) размещен (погружен ) в источнике низкопотенциального тепла (об их устройстве будет сказано ниже). Получая тепловую энергию от внешнего бесперебойного источника (показано широкой розовой стрелкой), подогреваясь всего на несколько градусов (обычно, при использовании зондов или коллекторов в грунте или в воде – до 4 ÷ 6 ° С ), циркулирующий теплоноситель попадает в теплообменник-испаритель (поз. 4). Здесь происходит первичная передача тепла, полученного извне.
  • Хладагент, используемый во внутреннем контуре насоса (поз. 5), имеет крайне низкую температуру кипения. Обычно здесь применяется один из современных, безопасных для окружающей среды фреонов, либо двуокись углерода (по сути – сжиженный углекислый газ). На вход в испаритель (поз. 6) он подходит в жидком состоянии, при пониженном давлении — это обеспечивает регулируемый дроссель (поз. 10). Особая форма входного отверстия капиллярного типа и форма испарителя способствуют практически мгновенному переходу хладагента в газообразное состояние. По законам физики, испарение всегда сопровождается резким охлаждением и поглощением окружающего тепла. Так как этот участок внутреннего контура расположен в одном теплообменнике с первым контуром, то фреон отбирает тепловую энергию от теплоносителя, одновременно охлаждая его (широкая оранжевая стрелка). Охлажденные теплоноситель продолжает циркуляцию, и вновь набирает тепловую энергию из внешнего источника.
  • Хладагент уже в газообразном состоянии, перенося переданное ему тепло, попадает в компрессор (поз. 7), где под воздействием сжатия его температура резко поднимается. Далее, он попадает в следующий теплообменник (поз. 8), в котором расположен конденсатор и трубы третьего контура теплового насоса. (поз. 11).
  • Здесь происходит полностью противоположный процесс – хладагент конденсируется, переходя в жидкое состояние, при этом отдавая свой нагрев теплоносителю третьего контура. Далее, в жидком состоянии при высоком давлении он проходит через дроссель, где давление снижается, и цикл физических превращений агрегатного состояния хладагента повторяется вновь и вновь.
  • Теперь переходит к третьему контуру (поз. 11) теплового насоса. Ему через теплообменник (поз. 8) предается тепловая энергия от разогретого компрессией хладагента (широкая красная стрелка). Этот контур имеет собственные циркуляционный насос (поз. 12), которые обеспечивает движение теплоносителя по трубам отопления. Однако намного разумнее использовать еще и аккумулирующую, тщательно изолированную буферную емкость (поз. 13), в которой будет накапливаться переданное тепло. Накопленный запас тепловой энергии расходуется уже для нужд отопления и горячего водоснабжения, расходуясь постепенно, по мере надобности. Подобная мера позволяет подстраховаться на случай перебоев в электропитании или использовать более дешевый ночной тариф на электроэнергию, необходимую для работы теплового насоса.

Если устанавливается буферный аккумулирующий бак, то к нему уже подводится контур отопления (поз . 14) с собственным циркуляционным насосом (поз . 15), обеспечивающим перемещение теплоносителя по трубам системы (поз . 16). Как уже говорилось, может быть и второй контур, который обеспечивает подачу горячей воды для бытовых нужд.

Тепловой насос не может работать без электропитания – оно требуется для функционирования компрессора (широкая зеленая стрелка), да и циркуляционные насосы во внешних контурах также потребляют электроэнергию. Однако, как уверяют разработчики и производители тепловых насосов, потребление электричества несопоставимо с получаемым «объемом » тепловой энергии. Так, при правильной сборке и оптимальных условиях эксплуатации, часто ведется разговор о 300 и более процентах КПД, то есть при одно затраченном киловатте электричества тепловой насос может дать «на-гора» 4 киловатта тепловой энергии.

На самом деле подобное утверждение о КПД несколько некорректно. Законы физики никто не отменял, и КПД выше 100% — такая же утопия, как и « perpetummobile » — вечный двигатель. Речь в данном случае идет о рациональном использовании электричества в целях «перекачки» и преобразования энергии, поступающей из неиссякаемого внешнего источника. Здесь уместнее использовать понятие СОР (от английского «coefficient of performance» ) что в русском языке чаще называется «коэффициентом преобразования теплоты». В этом случае, действительно, могут получиться значения, превышающие единицу:

CO Р = Q п / А , где:

CO Р – коэффициент пр еобразования теплоты;

Q п – количество тепловой энергии, полученное потребителем;

А – работа, выполненная компрессорной установкой.

Существует еще один нюанс, про который часто просто забывают – определенного расхода энергии для нормального функционирования насоса требует не только компрессор, но и циркуляционные насосы во внешних контурах. Потребляемая мощность у них, конечно, значительно меньше, но, тем не менее , ее тоже можно учесть, а этого часто в маркетинговых целях просто не делается.

Полученное суммарно количество тепловой энергии может расходоваться:

1 – оптимальное решение – это система теплых водяных полов. Как правило, тепловые насосы дают «подъем » температуры до уровня примерно в 50 ÷ 60 ° С – это достаточно для подогрева пола.

2 – горячее водоснабжение дома. Обычно в системах ГВС температура на таком уровне и поддерживается – около 45 ÷ 55 °С .

3 – а вот для обычных радиаторов такого нагрева будет явно недостаточно. Выход – увеличивать количество секций или же использовать специальные низкотемпературные радиаторы. Помогут решить вопрос и отопительные приборы конвекционного типа.

4 – одно из важнейших достоинств тепловых насосов – возможность их переключения на «противоположный» режим работы. В летнее время такой агрегат может выполнять функцию кондиционирования воздуха – отбирая тепло из помещений и перенося его в грунт или водоем .

Источники низкопотенциальной энергии

Какие же источники низкопотенциальной энергии способны использовать тепловые насосы? В этой роли могут выступать горные породы, грунт на различной глубине, вода из естественных водоемов , колодцев или подземных водоносных горизонтов, атмосферный воздух или теплые воздушные потоки, отводимые из зданий или от промышленных технологических комплексов.

А. Использование тепловой энергии грунтов

Как уже говорилась, ниже уровня промерзания почвы, характерного для данного региона, температура грунта отличается стабильностью в течение всего года. Это и используется для работы тепловых насосов по схеме «грунт – вода ».

Принципиальная схема отбора энергии «грунт — вода»

Для создания такой системы готовятся специальные поверхностные тепловые поля, на которых снимаются верхние слои грунта на глубину порядка 1,2 ÷ 1, 5 метров . В них укладывают контуры, выполненные из пластиковых или металлопластиковых труб диаметром, как правило, 40 мм. Эффективность съема тепловой энергии зависит от местных климатических условий и от общей протяженности создаваемого контура.

Ориентировочно, для средней полосы России, можно оперировать следующими соотношениями:

  • Сухие песчаные грунты – 10 Вт энергии с одного погонного метра трубы.
  • Сухие глинистые грунты – 20 Вт/м.
  • Влажные глинистые грунты – 25 Вт/м.
  • Глинистая порода с высоким расположением грунтовых вод – 35 Вт/м.

При всей кажущейся простоте такого теплообмена, способ отнюдь не всегда является оптимальным решением. Дело в том, что он предполагает очень значительные объемы земляных работ. То, что выглядит простым на схеме – значительно сложнее в практическом исполнении. Посудите сами – для того, чтобы «снять» с подземного контура даже всего 10 кВт т епловой энергии на глинистом грунте потребуется порядка 400 метров трубы. Если еще учитывать обязательное правило, что между витками контура должен быть интервал никак не меньше 1, 2 метров , то для укладки будет необходим участок площадью 4 сотки (20 × 20 метров).

Закладка поля для отбора тепла из грунта — чрезвычайно масштабная и трудоемкая задача

Во-первых, далеко не у всех есть возможность выделить такую территорию. Во-вторых, на этом участке полностью исключаются какие-либо постройки, так как велика вероятность повреждения контура. И в-третьих – отбор тепла из грунта, особенно при некачественно проведенных расчетах , может не пройти бесследно. Не исключен эффект переохлаждения участка, когда летнее тепло не сможет полностью восстановить температурный баланс на глубине залегания контура. Это может негативно сказаться на биологическом балансе в поверхностных слоях почвы, и в итоге некоторые растения просто не будут расти на переохлаждённом участке – такой своеобразный локальный эффект «ледникового периода».

Б. Тепловая энергия из скважин

Даже небольшой размер участка не будет препятствием для организации забота тепловой энергии из пробуренной скважины.

В качестве источника низкопотенциального тепла — глубокая скважина

Температура грунта с увеличение глубины становится только стабильнее, а на глубинах свыше 15 20 метров прочно стоит на 10-градусной отметке, увеличиваясь на два ÷ три градуса на каждые 100 м погружения. Причём , эта величина – абсолютно не зависит от времени года или капризов погоды, что делает именно скважину самым стабильным и предсказуемым источником тепла.

В скважины опускается зонд, представляющий собой U-образную петлю из пластиковых (металлопластиковых) труб с циркулирующим по ним теплоносителем. Чаще всего делается несколько скважин глубиной от 40 ÷ 50 и до 150 метров, не ближе 6 м одна от другой, которые связываются или последовательно, или с подключением к общему коллектору. Теплоотдача грунта при таком расположении труб – значительно выше:

  • При сухих осадочных породах – 20 Вт/м.
  • Каменистые грунтовые слои или насыщенные водой осадочные породы – 50 Вт/м.
  • Твердые горные породы, обладающие высокой теплопроводностью – 70 Вт/м.
  • Если повезло, и попался подземный водоносный горизонт – порядка 80 Вт/м.

При недостаточности места или при сложностях в глубоком бурении из-за особенностей грунта может выполняться несколько наклонных скважин лучами из одной точки.

Кстати, в том случае, если скважина приходится на водоносный горизонт со стабильным дебетом, то иногда применяют открытый контур первичного теплообмена. При этом вода закачивается насосом с глубины, участвует в теплообмене, а затем, охлажденная , сбрасывается во вторую скважину того же горизонта, на расположенную на определенном расстоянии от первой (это вычисляется при проектировании системы). Одновременно может быть организован и водозабор для бытовых нужд.

Основной недостаток скважинного способа отбора тепла – высокая стоимость бурильных работ, которые провести собственными силами, не располагая соответствующим оборудованием, очень сложно или попросту невозможно. Кроме того, бурение скважин часто требует разрешительных документов от органов природонадзора . Кстати, и использование прямого теплообмена с обратным сбросом воды в скважину тоже может оказаться запрещенным .

Ориентировочная теплоотдача с контура, погруженного в воду – 30 кВт/м. Значит, чтобы получить отдачу в 10 кВт, потребуется контур порядка 350 м .

Такие контуры-коллекторы монтируются на суше из пластиковых труб. Затем они перемещаются в водоем и погружаются на дно, на глубину не менее 2 метров, для чего привязываются грузы из расчета 5 кг на 1 погонный метр тр убы.

Затем выполняется термоизолированная прокладка труб к дому и подключение их к теплообменнику теплового насоса.

Однако, не следует думать, что любой водоем в полной мере подойдет для подобных целей – опять же, понадобятся весьма сложные теплотехнические расчеты . Например, небольшой и недостаточно глубокий пруд или мелкая тихая речушка мало того, что могут не справиться с задачей бесперебойной подачи низкопотенциальной энергии – их можно попросту переморозить вообще до дна, убив тем самым всех обитателей водоема .

Достоинства водяных источников тепла – нет необходимости в буровых работах, до минимума сводятся и земляные – только выкапывание траншей к дому для укладки труб. А как недостаток можно отметить малую доступность для большинства домовладельцев просто из-за отсутствия водоемов в разумной близости от жилья.

Кстати, в целях теплообмена нередко используют канализационные стоки – у них даже в холода достаточно стабилизированная положительная температура.

Г. Забор тепла из воздуха

Тепло для обогрева жилья или для горячего водоснабжения можно брать буквально из воздуха. На таком принципе работают тепловые насосы «воздух – вода» или «воздух воздух ».

По большому счету – это тот же кондиционер, только переключенный на режим «зима». Эффективность такой системы обогрева очень сильно зависит и от климатических условий региона, и от капризов погоды. Современные установки хотя и рассчитаны для работы даже при очень низких температурах (до – 25, а некоторые – даже до – 40 ° С ), но коэффициент пр еобразования энергии при этом резко падает, рентабельность и целесообразность подобного подхода сразу начинают вызывать кучу вопросов.

Но зато такой тепловой насос вообще не требует никаких трудоемких операций – чаще всего его первичный теплообменный блок устанавливается или на стене (крыше) здания, либо в непосредственной близости от него. Его, кстати, практически нельзя отличить от внешнего блока сплит-системы кондиционирования.

Такие тепловые насосы часто используют в качестве дополнительных источников тепловой энергии для отопления, а в летнее время – в роли теплогенератора для горячего водоснабжения.

Применение подобных тепловых насосов в полне оправдано для рекуперации – использования вторичного тепла, например, на выходах вентиляционных шахт (каналов). Так установка получает достаточно стабильный и высокотемпературный источник энергии – это широко применяется на промышленных предприятиях, где постоянно имеются источники вторичного тепла для его утилизации.

В системах «воздух-воздух» и «воздух – вода» первичного контура теплообмена вообще нет. Вентиляторы создают воздушный поток, который обдувает непосредственно трубки испарителя с циркулирующим по ним хладагентом.

Кстати, существует целая линейка тепловых насосов DХ – типа (от английского «direct exchange» , что означает «прямой обмен»). В них тоже , по сути, отсутствует первичный контур. Теплообмен с источником низкопотенциального тепла (в скважинах или в слое грунта) проходит сразу в медных трубах, заполненных х ладагентом. Это, с одной стороны , дороже и сложнее в исполнении, но зато позволяет существенно уменьшить и глубину скважин (достаточно одной 30-метровой вертикальной или нескольких наклонных до 15 м ), и общую площадь теплообменного горизонтального поля, если оно расположено под верхним слоем грунта. Соответственно, можно говорить и о большем коэффициенте преобразования, и в целом – эффективности теплового насоса. Но вот только и медные теплообменные трубы намного дороже пластиковых и сложнее в монтаже, и стоимость хладагента значительно выше, чем обычного теплоносителя-антифриза.

Разумное решение – создавать комбинированную систему отопления (бивалентную ). Пока хватает мощности ТН , он выступает основным источником тепла, при недостаточности мощности при наступлении настоящих холодов – на подмогу приходят электрический нагрев, жидко— или твердотопливный котел , солнечный коллектор и т.п . Газовое оборудование в этом случае не рассматривается – если есть возможность применять для отопления сетевой газ, то потребность в тепловом насосе выглядит весьма сомнительно, по крайней мере, при нынешнем уровне цен на энергоносители.

В. Система отопления с тепловым насосом не требует дымохода. Работает она практически бесшумно.

Действительно, сложностей с обустройством дымохода у хозяев не возникнет. Что же касается тишины работы, то как и у любой другой бытовой техники с теми или иными приводами, шумовой фон все равно присутствует — от работы компрессора, циркуляционных насосов. Другой вопрос, что в современных моделях этот уровень шумности при правильной отладке агрегата – весьма невелик и не причиняет беспокойства жильцам. Кроме того, наверное, мало кому придет в голову устанавливать подобное оборудование в жилых комнатах.

Г. Полная экологичность системы – полностью отсутствуют какие-либо выбросы в атмосферу, нет никакой угрозы жильцам дома.

Все верно , особенно в отношении моделей, в которых в качестве хладагента применяется современный, безвредный для озонового слоя фреон (например, R-410А ).

Можно также сразу отметить пожаро — и взрывобезопасность такой системы – нет легковоспламеняющихся или горючих веществ, исключается скопление их взрывоопасных концентраций.

Д. Современные тепловые насосы являются универсальными климатическими установками, способными работать и на отопление, и на кондиционирование – в летнее время.

Это очень важное преимущество, которое, действительно, дает хозяевам массу дополнительных удобств.

Е. Работа теплового насоса полностью контролируется автоматикой, и не требует вмешательства пользователя. Такая система, в отличие от других, не нуждается в регулярном обслуживании и профилактике.

С первым утверждением можно полностью согласиться, однако, не забыв упомянуть и то, что большинство современных отопительных газовых или электрических установок также полностью автоматизированы, то есть таким достоинством обладают не только тепловые насосы.

А вот по второму вопросу можно вступить в дискуссию. Наверное, ни один из промышленных или бытовых отопительных агрегатов не может обойтись без регулярных проверок и профилактических работ. Даже если справедливо предположить, что во внутренний контур с хладагентом и в автоматику самостоятельно лезть не стоит, то внешние контуры с антифризом или иным теплоносителем определенного участия все же потребуют. Здесь и регулярная чистка фильтров (особенно в воздушных системах), и контроль состава и уровня теплоносителя, и ревизия работы циркуляционных насосов, и проверка состояния труб на целостность и наличие подтеканий на фитингах, и многое другое – одним словом, то, без чего не обходится ни одна система отопления. Одним словом, утверждение о полной ненадобности обслуживания выглядит, по меньшей мере , голословно.

Ж. Быстрая окупаемость системы отопления с тепловым насосом.

Этот вопрос – настолько неоднозначный, что на нем следует остановиться особо.

Некоторые компании, занимающиеся реализацией подобного оборудования, обещают своим потенциальным клиентам очень быстрый возврат вложенных в реализацию проекта средств. Они приводят выкладки в таблицах, по которым, действительно, можно создать мнение, что тепловой насос – единственное приемлемое решение, если нет возможности протянуть к дому газовую магистраль.

Вот один из таких образцов:

Виды топлива Природный газ (метан) Дрова колотые берёзовые Эл. энергия по единому тарифу Дизтопливо Тепловой насос (ночной тариф)
Ед. поставки топлива м ³ 3 м ³ кВт × ч литр кВт × ч
Стоимость топл. с доставкой, руб 5.95 6000 3.61 36.75 0.98
Калорийность топлива 38.2 4050 1 36 1
Ед. измерения калорийности МДж/м ³ кВт × ч кВт × ч МДж/литр кВт × ч
КПД котла,% или COP 92 65 99 85 450
Стоимость топлива, руб/МДж 0.17 0.41 1.01 1.19 0,06
Стоимость топлива, руб/кВт*ч 0.61 1.48 3.65 4.29 0.22
Стоимость топлива, руб/ГКал 708 1722 4238 4989 253
Стоимость топлива в год, руб 24350 59257 145859 171721 8711
Срок эксплуатации оборудования, лет 10 10 10 10 15
Примерная стоимость оборудования, руб 50000 70000 40000 100000 320000
Стоимость монтажа, руб 70000 30000 30000 30000 80000
Стоимость подключения сетей (техусловия, оборудование и монтаж), руб 120000 0 650 0 0
Первоночальные инвестиции, руб (приблизительно) 240000 100000 70650 130000 400000
Эксплуатационные затраты, руб/год 1000 1000 0 5000 0
Виды эксплуатационных работ техобслуживание, чистка камеры чистка камеры, дымоходов Замена ТЭНов чистка камеры, форсунок, замена фильтров нет
Итого расходы за весь период эксплуатации (с затратами на топливо), руб 493502 702572 1529236 1897201 530667
Итого относительная стоимость 1 года эксплуатации (топливо, аммортизация, обслуживание и т.д) 49350 70257 152924 189720 35378

Да, итоговая строка действительно впечатляет, но все ли тут обстоит «гладко»?

Первое, что бросится в глаза внимательному читателю – тариф на электроэнергию для электрического обогрева взят общий, а на тепловой насос, отчего-то, льготный ночной. Видимо, для того, чтобы итоговая разница была более наглядной.

Далее. Стоимость оборудования теплового насоса показана не совсем корректно. Если внимательнее ознакомиться с предложениями в интернете, то цены на установки мощностью около 7 ÷ 10 кВт, которые могут использоваться в целях отопления, начинаются от 300 – 350 тысяч рублей (воздушные тепловые насосы и маломощные установки, используемые лишь для горячего водоснабжения, стоят несколько поменьше ).

Казалось бы, все правильно, но «дьявол кроется в деталях» Это – только лишь стоимость самого аппаратного блока, который без периферийных устройств, контуров, зондов и т.п . – бесполезен. Цена только одного коллектора (без труб) даст еще не менее 12 ÷ 15 тысяч, скважинный зонд ст оит не меньше. А если еще прибавить стоимость труб, фитингов, запорно-арматурных элементов, достаточно большого количества теплоносителя – общая сумма вырастает стремительно.

Трубы, коллекторы, запорная арматура — тоже достаточно «весомая» статья общих расходов

Но и это – еще не все. Уже упоминалось, что система отопления на основе теплового насоса, как, наверное, ни одна другая, нуждается в сложных специализированных расчетах . При проектировании учитывается очень много факторов: общая площадь и объемы самого здания, степень его утепленности и расчет тепловых потерь, обеспеченность достаточным по мощности источником электроснабжения, наличие необходимого участка территории (близлежащего водоема ) для размещения теплообменных горизонтальных контуров или бурения скважин, тип и состояние грунтов, расположение водоносных слоев и много другое. Безусловно, и изыскательские, и проектировочные работы также потребуют и времени, и соответствующей оплаты специалистам.

Установка же оборудования «наобум», без правильного проектирования, чревата резким снижением эффективности работы системы, а порой – даже локальными «экологическими катастрофами» в виде недопустимого переохлаждения грунта, колодцев или скважин, водоемов .

Следующее – монтаж оборудования и создание теплообменных полей или скважин. Уже упоминалось о масштабах земляных работ, глубине бурения. Для заполнения скважин после установки зондов требуется специальный бетонный раствор с высокой степенью теплопроводности. Плюс к этому – коммутация контуров, прокладка магистралей к дому и т.п . – все это еще один немалый «пласт» материальных затрат. Сюда же можно отнести приобретение и монтаж аккумулирующей емкости с необходимой автоматикой управления, переделку системы отопления под теплые полы или установку специальных теплообменных приборов.

Одним словом, затраты очень внушительные, и, наверное, именно это пока держит системы отопления от тепловых насосов в разряде «экзотики», недоступной подавляющему большинству владельцев частных домов.

А как же с высочайшей их популярностью и массовостью применения в других странах? Дело в том, что там работают правительственные программы стимуляции населения к использованию альтернативных источников энергоснабжения. Потребители, которые изъявили желание перейти на подобные виды отопления, имеют право на получение государственных субсидий, во многом покрывающих первоначальные затраты на проектирование и монтаж оборудования. Да и уровень доходов у работающих граждан, если честно, там несколько повыше , нежели в наших краях.

Для европейских городов и поселков это достаточно привычная картина — теплообменник теплового насоса около дома

Резюме – к утверждениям о быстрой окупаемости подобного проекта нужно относиться с определенной долей осторожности. Прежде чем браться за столь масштабный и ответственный комплекс мероприятий, следует т щательно просчитать и взвесить всю «бухгалтерию» до мелочей, оценить степени риска, свои финансовые возможности, планируемую рентабельность и т.п . Возможно, найдутся более рациональны, приемлемые варианты – прокладка газа, установка современных твёрдотопливных котлов длительного горения, использование новых разработок в сфере электрического обогрева и т.п .

Не следует воспринимать написанное, как «негатив» в адрес тепловых насосов. Безусловно – это чрезвычайно прогрессивное направление, и у него – огромные перспективы. Речь идет лишь о том, что в подобных вопросах не следует проявлять необдуманного волюнтаризма – решения должны основываться на тщательно продуманных и всесторонне проведенных расчетах .

Можно ли собрать тепловой насос с воими руками?

Общая перспективность использования «дармовых» источников тепловой энергии, в совокупности с сохраняющейся высокой ценой на оборудование, волей-неволей приводят многих домашних умельцев к вопросам самостоятельного создания подобных отопительных установок. Есть ли возможность изготовить тепловой насос с воими силами?

Безусловно, собрать такую тепловую машину, используя некоторые готовые агрегаты и нужные материалы – вполне возможно. В интернете можно найти и видеоматериалы, и статьи с успешными примерами. Правда, точных чертежей отыскать – вряд ли удастся, все обычно ограничивается рекомендациями по возможности изготовления тех или иных деталей и узлов. Впрочем, в этом есть рациональное «зерно»: как уже говорилось, тепловой насос – настолько индивидуальная система, требующая расчетов применительно к конкретным условиям, что слепо копировать чужие наработки будет вряд ли целесообразным.

Тем не менее , тому, кто все же решится на самостоятельное изготовление, следует прислушаться к некоторым технологическим рекомендациям.

Итак, «вынесем за скобки» создание внешних контуров – отопления и первичного теплообмена. Основной задачей в таком случае становится изготовление двух теплообменников, испарителя и конденсатора, связанных контуром из медной трубки с циркулирующим по нему хладагентом. Этот контур, как видно из принципиальной схемы, подключен к компрессору.

Компрессор найти несложно — новый или от разобранной на запчасти техники

Сам компрессор раздобыть не так сложно – его можно приобрести новый – в специализированном магазине. Можно поискать на хозяйственном рынке – часто продают агрегаты от разобранных на запчасти старых холодильников или кондиционеров. Вполне возможно, что компрессор обнаружится и в собственных запасах – многие рачительные хозяева даже при покупке новой бытовой техники такие вещи не выбрасывают.

Теперь – вопрос теплообменников. Здесь есть несколько различных вариантов:

А. Если есть возможности приобрести готовые пластинчатые теплообменники , запаянные в герметичный корпус, то этим решится сразу масса проблем. Такие устройства обладают отменной эффективностью теплопередачи из одного контура в другой – недаром их используют в системах отопления при подключении автономной внутриквартирной разводки к трубам центральной сети.

Удобство еще и в том, что подобные теплообменники — компактные, имеют готовые патрубки, фитинги или резьбовые соединения для подключения к обоим контурам.

Видео: изготовление теплового насоса с использованием готовых теплообменников

Б. Вариант т еплового насоса с теплообменниками из медных трубок и закрытых емкостей .

Оба теплообменника, в принципе, схожи по устройству, но емкости для них могут использоваться разные.

Для конденсатора подойдет цилиндрический бак из нержавейки емкостью около 100 литров. В нем необходимо разместить медный змеевик, выведя его концы сверху и снизу наружу и герметично запаяв места прохода по окончании сборки. Вход должен располагаться снизу, выход, соответственно – в верхней части теплообменника.

Сам змеевик навивают из медной трубки, которую можно приобрести в магазине метражом (толщина стенок – не менее 1 мм). В качестве шаблона можно взять трубу большого диаметра. Витки змеевика следует несколько разнести между собой, прикрепив, например, к алюминиевому перфорированному профилю.

Водяной контур отопления может быть подключен посредством обыкновенных водопроводных патрубков, смонтированных (вваренных, впаянных или на резьбовом соединении с уплотнением) в противоположных краях теплообменного бака. Для циркуляции воды используется само внутренне пространство теплообменника. В итоге должна получиться примерно такая конструкция:

Для испарителя такие сложности не нужны – здесь не бывает высоких температур или избыточного давления, поэтому будет достаточно объёмной пластиковой емкости . Змеевик навивается примерно так же, концы его выводятся наружу. Для циркуляции воды из первичного контура также достаточно обычных сантехнических соединений.

Испаритель также устанавливается на кронштейны рядом с конденсатором, а около них готовится площадка для монтажа компрессора с последующим его подключением к контуру.

Рекомендаций по обвязке компрессора, установке дроссельного регулировочного клапана , по диаметру и длине капиллярной трубки, необходимости регенерационного теплообменника и т.п ., даваться не будет – это должен рассчитывать и монтировать только специалист по холодильным установкам.

Следует помнить, что здесь требуются высокие навыки герметичной пайки медных трубопроводов , умение правильно проводить закачку хладагента – фреона, проводить проверку и осуществлять пробный запуск. Кроме того, работа эта – достаточно опасная, требующая соблюдения весьма специфических правил предосторожности.

В . Тепловой насос с теплообменниками из труб

Другой вариант изготовления теплообменников. Для этого понадобятся металлопластиковые и медные трубы.

Медные трубки подбираются двух диаметров – порядка 8 мм для конденсатора, и порядка 5 ÷ 6 для испарителя. Длина их соответственно 12 и 10 метров.

Металлопластиковые трубы предназначены для циркуляции по ним воды из контуров первичного теплообмена и отопления, и в их полости будут расположены медные трубки внутреннего контура теплового насоса. Соответственно, диаметр тр уб можно взять 20 и 16 мм.

Металлопластиковые трубы растягиваются в длину, так чтобы в них можно было без особых усилий ввести медные, которые должны выступать с каждой стороны примерно на 200 мм.

На каждый из концов трубы одевается и « запаковывается тройник, так, чтобы медная трубка прошла сквозь него прямо. Пространство между ней и телом тройника надежно запечатывается термостойким герметиком. Оставшийся перпендикулярный вывод тройника будет служить для подключения теплообменника к водяному контуру.

Рама с первым теплообменником и установленным компрессором

Разместить их можно один над другим в импровизированном корпусе рамного типа. На этом же каркасе предусматривается и площадка для установки компрессора. А чтобы снизить передачу вибрации от него на общую конструкцию, можно компрессор крепить, например, через автомобильные сайлент-блоки .

Чтобы провести обвязку компрессора и заправку получившегося контура фреоном, опять же потребуется пригласить специалиста-холодильщика.

Можно установить такой тепловой насос на предназначенное ему место и подсоединить фитинги тройников на теплообменниках каждый к своему контуру. Останется лишь подвести питание и запустить агрегат.

Все рассмотренные самодельные тепловые насосы – вполне работоспособные конструкции. Однако, не следует полагать, что вот так просто можно полностью решить проблему дешёвого отопления дома. Здесь речь идет , скорее, о создании действующих моделей, которые требуют дальнейшей доработки, модернизации. Даже опытные в этом деле мастера, изготовившие уже не один подобный аппарат, постоянно ищут пути к совершенствованию, создавая новые «версии».

Видео: как мастер совершенствует собственноручно созданный тепловой насос

Кроме того, был рассмотрен только сам тепловой насос, а ему для нормальной работы требуется аппаратура управления, контроля, регулировки, связанная с системой отопления дома. Здесь уже не обойтись без определенных познаний в области электротехники и электроники.

Опять же, можно вернуться к проблемам расчетов – «потянет» ли самодельный тепловой насос систему отопления, так чтобы стать реальной альтернативой другим источникам тепла? Часто в этих вопросах домашним мастерам приходится «пробираться на ощупь». Однако, если базовый принцип усвоен, и первая модель успешно заработала – это уже большая победа. Можно свой пробный образец временно приспособить к обеспечению дома горячей водой для бытовых целей, а самому приниматься за проектирование более совершенного агрегата, с учетом уже наработанного опыта и исправления допущенных ошибок.

Повышение эффективности системы отопления дома является одной из главных задач его хозяина, поскольку расходы по этой статье в российских климатических условиях весьма значительны. Поэтому задача использования энергии окружающего пространства для отопления весьма интересна, постоянно развивается и остается предметом внимания, особенно в сообществе «самоделкиных». Собрать тепловой насос своими руками вполне доступно подготовленному человеку, поскольку особых сложностей эта работа не представляет, и необходимости в изготовлении деталей сложной конфигурации нет.

Принцип действия устройства

Он основан на сборе тепла из окружающего пространства и использовании его для системы отопления дома с целью уменьшения затрат на эту функцию. Аппараты такого типа имеются во многих домах, это холодильники, сплит – системы и кондиционеры. Некоторые из них имеют двойное назначение, выполняя по выбору пользователя либо отопление, либо охлаждение помещений в зависимости от потребности.

Теоретической основой таких машин является обратный цикл Карно. Но, не вникая в подробности, просто опишем процесс работы такого устройства.

Рис.1. Принципиальная схема работы теплового насоса в сети отопления

Рабочим телом в таких устройствах, как и в холодильниках, является фреон или аммиак, который компрессором нагнетается в нагревательный контур. При этом давление внутри системы резко повышается, поскольку выход теплоносителя перекрыт дросселем. Полученным теплом согревается теплоноситель в системе отопления дома, как правило, температура достигает уровня 64 о С. Горячий поток дополняет циркулирующий в основной отопительной сети, снижая потребление топлива. При определенном давлении дроссель открывается, и рабочее тело поступает в камеру испарителя. При этом его температура снижается. Дополнительное тепло получается из регистра сбора тепла. Далее цикл повторяется, как и в устройстве холодильника.

Расчет параметров системы

Мощность, которую потребует самодельный тепловой насос, можно рассчитать из соотношения:

R = ( k * v * T )/860, где

R мощность, необходимая для обогрева помещения

k коэффициент для учета тепловых потерь зданием (1 – качественно утепленное помещение, 4 – дощатый барак);

v – общий объем помещения, подлежащего отоплению;

T наибольший перепад температур внешнего мира и внутридомового пространства;

860 – коэффициент перевода результата расчета в кВт из ккал.

В качестве примера приведем расчет для дома 200 квадратных метров с высотой потолков 2,8 метра:

R = 1 * 200*2,8 * (22 - -25)/860 = 560 * 47 /860 = 30,6 кВт.

Целесообразно использовать теплонасос с запасом мощности 10 – 12%, то есть – порядка 35 кВт.

Нужно обратить внимание на такой показатель, как разность наружной и внутренней температур. Если брать подогретый воздух из окружающего пространства с температурой порядка 7 о С, показатель разности составит (22 – 7) 15 градусов, а мощность теплонасоса составит 9,8 кВт. Сравните два этих показателя и почувствуйте разницу при использовании тепла окружающего пространства.

Состав оборудования

Внешний контур

Для внешнего контура агрегата отопления дома понадобятся трубы. Наибольшей теплопроводностью обладают изделия из металла (но не из нержавеющей стали), поэтому для системы сбора тепла лучше применять их.


Рис.2. Сбор тепла в земле с использованием скважины для самодельного теплонасоса

На рис.2 показан геотермальный тепловой насос своими руками с использованием деталей старого кондиционера и холодильника. Глубина скважины для сбора тепла геотермальных вод составляет порядка 60 – 120 метров. На приведенной схеме не показана обсадная труба, однако ее применение обязательно, поскольку обсадка защищает стенки скважины от разрушения. Регистр сбора внешнего тепла должен находиться внутри обсадной трубы.


Рис.3. Поверхностный сбор внешнего тепла

Сбор пространственной энергии для отопления дома может производиться не только через глубинную скважину, но и с использованием горизонтальной системы труб, заглубленных не менее, чем на величину промерзания грунта.

Достаточный результат дает сбор тепла из водоема, поскольку на дне температура воды всегда составляет 4 градуса тепла, поскольку именно в таком состоянии она имеет наибольшую плотность. Привлекательной стороной является значительно меньший объем земляных работ.

Используются для сбора тепла и системы, нагревающиеся под воздействием солнца. Такие блоки устанавливаются чаще всего на крыше дома и предназначаются для нагрева воды или воздуха. Они существенно повышают температуру в испарителе теплонасоса, повышая эффективность системы отопления дома.


Рис.4. Использование гелиоколлектора в системе обогрева здания теплонасосом

Испаритель

Этот узел представляет собой емкость, в которой располагается теплообменник, несущий в себе носитель тепла, собранного наружным контуром. Конструктивное решение этой детали может быть различным, но чаще всего его выполняют из медных труб.


Рис. 5. Форма теплоэлемента испарителя должна обеспечивать максимальный контакт с хладагентом

Изготавливая тепловой насос своими руками, часто используют пригодные для эксплуатации узлы и детали из старого холодильника или кондиционера, а также вышедшей из строя сплит – системы.

Компрессор

На самодельных теплонасосах чаще всего применяют компрессоры из имеющейся в наличии старой техники. Когда система агрегата собрана и испытана, можно подумать о замене компрессора из старого холодильника на другой, более или менее мощный. Выбирая компрессор, лучше всего обратить внимание на узлы из сплит – систем, отличающиеся повышенной мощностью и надежностью. Современные агрегаты, как правило, оснащаются блоками автоматического управления и регулировки, что значительно упрощает управление этими агрегатами.


Рис.6. Компрессор для теплового насоса

Конденсатор

К выбору этого элемента системы нужно подойти особенно тщательно, поскольку он представляет собой сосуд, работающий под давлением. Предпочтительно использовать старый газовый баллон. Его придется разрезать, чтобы поместить туда теплообменник, а затем снова сварить.

Дроссели

В теплонасосах это устройства для сброса давления из конденсатора в испаритель. Деталь легко найти в магазинах или мастерских по ремонту бутовой техники, поскольку они очень долговечны в работе.


Рис.7. Дроссель для теплонасоса

Тепловые насосы Френетта

Эти устройства чрезвычайно просты и эффективны. Однако для их изготовление важна точность исполнения каждой детали и тщательная балансировка всей системы ротора.


Рис.8. Схема теплового насоса Френетта

При работе такого теплонасоса нагревается масло, и передача тепла в систему отопления дома производится через радиатор. Возможны вертикальные и горизонтальные схемы устройства.

Тепловой насос френетта своими руками для отопления дома можно изготовить, только имея доступ к металлообрабатывающему оборудованию и хорошую слесарную подготовку.


Рис.9. Вариант исполнения самодельного теплонасоса

Заключение

Использование энергии окружающего пространства заслуживает внимания, позволяя сократить расходы на отопление дома. При использовании теплоты геотермальных вод или грунтового подогрева воздуха быстро не окупится в связи с большими трудовыми и финансовыми затратами, однако экономичность процесса не подвергается сомнениям.

Кроме того, имеется возможность использовать теплонасосы как сплит – системы, повышая комфортность проживания, а применение блока автоматического управления облегчит управление устройством.