Му та ци он ная. Краткая характеристика видов мутаций. Виды мутационной изменчивости

Мутационной называется изменчивость, вызванная возникновением мутации. Мутации - это наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901-1903 гг. и сводятся к следующему:

  • мутации возникают внезапно как дискретные изменения признаков;
  • новые формы устойчивы;
  • в отличие от ненаследственных изменений мутации не образуют непрерывных рядов. Они представляют собой качественные изменения;
  • мутации проявляются по-разному и могут быть как полезными, так и вредными;
  • вероятность обнаружения мутаций зависит от числа исследованных особей;
  • сходные мутации могут возникать повторно;
  • мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

По характеру изменения генома различают несколько типов мутаций - геномные, хромосомные и генные.

Геномные мутации (анеуплоидия и полиплоидия) - это изменение числа хромосом в геноме клетки (подробнее ).

Хромосомные мутации , или хромосомные перестройки , выражаются в изменении структуры хромосом, которые можно выявить и изучить под световым микроскопом. Известны перестройки разных типов (нормальная хромосома - ABCDEFG):

  • нехватки , или дефишенси , - это потеря концевых участков хромосомы;
  • делеции - выпадение участка хромосомы в средней ее части (ABEFG);
  • дупликации - двух- или многократное повторение набора генов, локализованных в определенном участке хромосомы (ABCDECDEFG);
  • инверсии - поворот участка хромосомы на 180° (ABEDCFG);
  • транслокации - перенос участка к другому концу той же хромосомы либо к другой, негомологичной хромосоме (ABFGCDE).

При дефишенси, делениях и дупликациях изменяется количество генетического материала хромосом. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры хромосомных перестроек известны у многих организмов, включая человека. Тяжелое наследственное заболевание синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами) обусловлено гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается умственной отсталостью. Обычно дети с таким синдромом рано умирают.

Дупликации играют существенную роль в эволюции генома, поскольку могут служить материалом для возникновения новых генов, так как в каждом из двух ранее одинаковых участков могут происходить различные мутационные процессы.

При инверсиях и транслокациях общее количество генетического материала остается прежним, изменяется только его расположение. Такие мутации тоже играют значительную роль в эволюции, так как скрещивание мутантов с исходными формами затруднено, а их гибриды F1 чаще всего стерильны. Поэтому здесь возможно только скрещивание исходных форм между собой. Если у таких мутантов окажется благоприятный фенотип, они могут стать исходными формами для возникновения новых видов. У человека все указанные мутации приводят к патологическим состояниям.

Генные, или точковые, мутации - результат изменения нуклеотидной последовательности в молекуле ДНК. Возникшее изменение последовательности нуклеотидов в данном гене воспроизводится при транскрипции в структуре иРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах. Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации, вставки лишней пары нуклеотидов, делеции (выпадение пары нуклеотидов), инверсии или замены пар нуклеотидов (АТ ↔ ГЦ; АТ ↔ ЦГ или АТ ↔ ТА).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется (поскольку они рецессивны), однако известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидно-клеточная анемия - заболевание, вызываемое у человека заменой нуклеотидов в одном из генов, ответственных за синтез гемоглобина. Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и снижается количество кислорода, переносимого кровью. Анемия вызывает физическую слабость, может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю.

Генные мутации возникают под воздействием ультрафиолетовых лучей, ионизирующего излучения, химических мутагенов и других факторов. Особенно отрицательно сказывается фон ионизирующей радиации нашей планеты. Даже небольшое повышение естественного фона радиации (на 1/3), например в результате испытаний ядерного оружия, может привести к появлению в каждом поколении дополнительно 20 млн человек с тяжелыми наследственными нарушениями. Нетрудно представить себе, какую опасность не только для населения Украины, Беларуси и России, но и для всего человечества представляют такие события, как авария на Чернобыльской АЭС.

Лекция №20

Одна из центральных проблем генетики – выяснение соотносительности генотипа и условий среды обитания при формировании фенотипа организма. Однояйцовые близнецы при развитии в разных условиях отличаются по фенотипу. То есть в данном случае проявляется ненаследственная изменчивость. Ее изучение позволяет выяснить, каким образом наследственная информация реализуется в определенных условиях обитания.
Модификационная изменчивость это изменения признаков организма (его фенотипа), вызванные изменениями условий среды обитания и не связанные с изменением генотипа. Следовательно, модификационные изменения (модификации) – это реакции на изменение интенсивности действия определенных условий среды обитания, одинаковые для всех генотипно однородных организмов.

Степень выраженности модификаций прямо пропорциональна интенсивности и продолжительности действия на организм определенного фактора.

Долгое время велись дискуссии о том, наследуются или не наследуются изменения состояний признаков, приобретенных организмом во время индивидуального развития. То, что модификации не наследуются, доказал немецкий ученый А. Вейсман. На протяжении многих поколений он отрезал мышам хвосты, но у бесхвостых родителей рождались хвостатые потомки.

Как показали многочисленные исследования, модификации могут исчезать на протяжении жизни одной особи, если прекращается действие фактора, вызвавшего их. Например, летний загар исчезает осенью. Некоторые модификации могут сохраняться в течение всей жизни, но потомкам не передаются. Например, рахит сохраняется в течение всей жизни, но потомкам не передается.

Модификационные изменения играют исключительно важную роль в жизни организмов, обеспечивая приспособляемость к изменяющимся условиям среды. Например, линька млекопитающих играет защитную роль, загар защищает от вредного влияния солнечных лучей.

Но не все кодификационные изменения носят приспособительный характер. При попадании организма в непривычные условия. Например, при затенении нижней части стебля картофеля на нем образуются клубни.

Модификационная изменчивость подчиняется статистическим закономерностям. Например, любой признак может менять только в определенных пределах. Эти пределы, обусловленные генотипом организма, называют нормой реакции . Таким образом, данный аллельный ген обуславливает не определенное, кодируемое им состояние признака, а только пределы, в которых оно может изменяться в зависимости от интенсивности действия тех или иных факторов среды обитания. Среди признаков есть такие, состояние которых почти полностью определяется генотипом (расположение глаз, группа крови и т.д.) На степень проявления состояния других признаков (рост, масса организма) значительное влияние оказывают условия среды обитания.


Исследования показали, что норма реакции для определенных признаков имеет различные пределы. Наиболее узкая норма реакции у признаков, определяющих жизнеспособность организмов (например, расположение внутренних органов), а для признаков, не имеющих такого значения, она может быть более широкой (масса, рост…)

Для изучения изменчивости определенного признака составляют вариационный ряд последовательность вариант – количественных показателей проявления состояний определенного признака, расположенных в порядке их возрастания или убывания. Длина вариационного ряда свидетельствует о размахе модификационной изменчивости. Она обусловлена генотипом организмов (нормой реакции), однако зависит и от условий окружающей среды: чем стабильнее будут условия существования организмов, тем короче буде вариационный ряд, и наоборот.

Если проследить распределение отдельных вариант внутри вариационного ряда, то можно отметить, что наибольшее их количество расположено в средней его части, то есть имеет среднее значение определенного признака. Такое распределение объясняется тем, что минимальные и максимальные значения развития признака формируется тогда, когда большинство факторов окружающей среды действует в одном направлении: наиболее или наименее благоприятном. Но организм, как правило, ощущает разное их влияние: одни факторы способствуют развитию признака, другие наоборот тормозят, поэтому степень его развития у большинства особей вида усредненная. Таек, большинство людей имеют средний рост и только некоторая их часть – гиганты или карлики.

Распределение вариант внутри вариационного ряда изображается в виде вариационной кривой. Вариационная кривая – это графическое изображение изменчивости определенного признака, иллюстрирующее как размах изменчивости, так и частоту встречаемости отдельных вариант. С помощью вариационной кривой можно установить средние показатели и норму реакции того или иного признака.

Кроме ненаследственной модификационной изменчивости существует и наследственная, связанная с изменением в генотипе. Наследственная изменчивость может быть комбинативной и мутационной.

Комбинативная изменчивость связана с возникновением разных комбинаций аллельных генов (рекомбинаций ). Источником комбинативной изменчивости являются конъюгация гомологичных хромосом в профазе и их независимое расхождение в анафазе первого деления мейоза, а также случайное сочетание аллельных генов при слиянии гамет. Следовательно, комбинативная изменчивость, обеспечивающая разнообразие комбинаций аллельных генов, обеспечивает и появление особей с разными сочетаниями состояний признаков. Комбинативная изменчивость наблюдается и у организмов, размножающихся бесполым путем или вегетативно.

Мутации - это внезапно возникающие стойкие изменения генотипа, приводящие к изменению тех или иных наследственных признаков организма . Основы учения о мутациях заложены голландским ученым Гуго де Фризом, который и предложил этот термин.

Способность к мутациям - универсальное свойство всех организмов. Мутации могут возникать в любых клетках организма и вызывать любые изменения генетического аппарата и, соответственно, фенотипа. Мутации, возникающие в половых клетках организма, наследуются при половом размножении, а в неполовых клетках – наследуются только при бесполом или вегетативном размножении.

В зависимости от характера влияния на жизнедеятельность организмов различают летальные, сублетальные и нейтральные мутации. Летальные мутации , проявляясь в фенотипе, вызывают гибель организмов до момента рождения или завершения периода их развития. Сублетальные мутации снижают жизнеспособность организмов, приводя к гибели части из них (от 10 до 50%), а нейтральные в данных условиях не влияют на жизнеспособность организмов. Вероятность того, что возникшая вновь мутация окажется полезной, незначительна. Но в некоторых случаях, особенно при изменении условий среды обитания, нейтральные мутации могут оказаться для организма полезными.

В зависимости от характера изменений генетического аппарата различают мутации геномные, хромосомные и генные.

Геномные мутации связаны с кратным увеличением или уменьшением хромосомных наборов. Увеличение их количества, приводящее к полиплоидии , наиболее часто наблюдается у растений, иногда у животных (т.к. такие организмы погибают или неспособны к размножению).

Полиплоидия может возникать разными путями: удвоением количества хромосом, не сопровождающимся последующим делением клетки, образованием гамет с неуменьшенным количеством хромосом в результате нарушения процесса мейоза. Причиной полиплоидии также может быть слияние неполовых клеток или их ядер.

Полиплоидия приводит к увеличению размеров организмов, интенсификации процессов их жизнедеятельности и повышению продуктивности. Это объясняется тем, что интенсивность биосинтеза белков зависит от количества гомологичных хромосом в ядре: чем из больше, тем больше за единицу времени образуется молекул белка каждого вида. Однако полиплоидия может сопровождаться снижением плодовитости вследствие нарушения процесса мейоза: у полиплоидных организмов могут образовываться гаметы с разным количеством наборов хромосом. Как правило, такие гаметы не способны сливаться.

Полиплоидия играет важную роль в эволюции растений как один из механизмов образования новых видов. Ее используют в селекции растений при выведении новых высокопродуктивных сортов, например, мягкой пшеницы, сахарной свеклы, садовой землянки и т.д.

Мутации, связанные с уменьшением количества наборов хромосом, приводят к прямо противоположным последствиям: гаплоидные формы оп сравнению с диплоидными имеют меньшие размеры, у них снижается продуктивность и плодовитость. В селекции такой тип мутаций. Используют для получения форм, гомозиготных по всем генам: сначала получают гаплоидные формы, а затем количество хромосом удваивают.

Хромосомные мутации связаны с изменением количества отдельных гомологичных хромосом или в их строении. Изменение количества гомологичных хромосом по сравнению с нормой оказывает значительное влияние на фенотип мутантных организмов. При этом отсутствие одной или обеих гомологичных хромосом влияет более отрицательно на процессы жизнедеятельности и развитие организма, чем появление дополнительной хромосомы. Например, зародыш человека с хромосомным набором 44А+Х развивается в женский организм со значительными отклонениями в строении и жизненных функциях (крыловидная складка кожи на шее, нарушение формирования костей, кровеносной и мочеполовой системы), зародыш же с набором 44А+ХХХ развиваются в женский организм, лишь незначительно отличающийся от нормального. Появление третьей хромосомы в 21 паре вызывает болезнь Дауна.

Возможны и различные варианты перестройки строения хромосом: потеря участка, изменение последовательности генов в хромосоме и т.д. При потере участка хромосома становится короче и лишается некоторых генов. В результате у гетерозиготных организмов в фенотипе могут проявиться рецессивные аллели. В других случаях в хромосому встраивается дополнительный фрагмент, принадлежавший гомологичной хромосоме. Ткой тип мутаций проявляется в фенотипе редко.

При хромосомных перестройках, связанных с изменением последовательности расположения генов, участок хромосомы, образовавшийся в результате двух разрывов, поворачивается на 180 о и с помощью ферментов вновь в нее встраивается. Такой тип мутаций часто не влияет на фенотип, поскольку количество генов в хромосоме остается неизменным.

Встречается также обмен участками между хромосомами разных пар, а также встраивание в определенный участок хромосомы несвойственного ей фрагмента.

Общей причиной мутаций, связанных с изменением строения и числа хромосом, может быть нарушение процесса мейоза, в частности, конъюгации гомологичных хромосом.

Генные мутации – это стойкие изменения отдельных генов, вызванные нарушением последовательности нуклеотидов в молекулах нуклеиновых кислот (выпадение или добавление отдельных нуклеотидов, замена одного нуклеотида другим и т.д.). Это наиболее распространенный тип мутаций, который может затрагивать любые признаки организма и длительное время передаваться из поколения в поколение. Различные аллели имеют разную степень способности к изменению структуры. Различают стойкие аллели, мутации которых наблюдаются относительно редко, и нестойкие, мутации которых происходят значительно чаще.

Генные мутации могут быть доминантными, субдоминантными (проявляющимися частично) и рецессивными. Большинство генных мутаций рецессивны, они проявляются только в гомозиготном состоянии и поэтому выявить их довольно сложно.

В естественных условиях мутации отдельных аллелей наблюдаются достаточно редко, но поскольку организмы имеют большое число генов, то и общее количество мутаций также велико. Например, у дрозофилы примерно 5% намет несут разнообразные мутации.

Причины мутаций долго оставались невыясненными. И только в 1927 году сотрудник Т. Моргана – Г. Меллер установил, что мутации можно вызывать искусственно. Действуя рентгеновскими лучами на дрозофилу, он наблюдал у них разнообразные мутации. Факторы, способные вызывать мутации, называются мутагенными .

По происхождению они бывают химическими, физическими и биологическими. Среди физических мутагенов наибольшее значение имеют ионизирующие излучения, в частности, рентгеновское. Проходя через живое вещество, рентгеновские лучи выбивают электроны из внешней оболочки атомов или молекул, в результате чего те становятся заряженными положительно, а выбитые электроны продолжают этот процесс, вызывая химические преобразования различных соединений живых организмов. К физическим мутагенам относятся также ультрафиолетовые лучи (влияют на химические реакции, вызывая генные, реже – хромосомные мутации), повышенная температура (увеличивается количество генных мутаций, а при повышении до верхнего предела – и хромосомных) и другие факторы.

Химические мутагены были открыты позднее физических. Значительный вклад в их изучение внесла украинская школа генетиков, возглавляемая академиком С. М. Гершензоном. Известно множество химических мутагенов и ежегодно открываются все новые и новые. Например, алкалоид колхицин разрушает веретено деления, что приводит к удвоению количества хромосом в клетке. Иприт повышает частоту мутаций в 90 раз. Химические мутагены способны вызывать мутации всех типов.

К биологическим мутаге нам относятся вирусы. Установлено, что в клетках, пораженных вирусами, мутации наблюдаются значительно чаще, чем в здоровых. Вирусы, вызывая как генные, так и хромосомные мутации, вводя определенное количество собственной генетической информации в генотип клетки – хозяина. Считается, что эти процессы играли важную роль в эволюции прокариот, поскольку вирусы могут переносить генетическую информацию между клетками различных видов.

Спонтанные (непроизвольные) мутации возникают без заметного влияния мутагенных факторов, например, как ошибки при воспроизведении генетического кода. Их причины еще окончательно не выяснены. Ими могут быть: естественный радиационный фон, космические лучи, достигающие поверхности Земли и т.д.

Живые организмы способны определенным образом защищать свои гены от мутаций. Например, большинство аминокислот закодировано не одним, а несколькими триплетами; многие гены в генотипе повторяются. Защитой от мутаций также служит удаление измененных участков из молекулы ДНК: с помощью ферментов образуются два разрыва, мутировавший участок удаляется, а на его место встраивается участок с присущей этой части молекулы последовательностью нуклеотидов.

Способность к мутациям присуща всем живым организмам. Они возникают внезапно, а вызванные мутациями изменения устойчивы и могут наследоваться. Мутации могут быть вредными, нейтральными или, очень редко, полезными для организма. Мутагены универсальны, то есть они могут вызвать мутации у любого вида организмов. В отличие от модификаций, мутации не имеют определенной направленности: один и тот же мутагенный фактор, действующий с одинаковой интенсивностью на идентичные в генетическом отношении организмы, может вызвать у них разные типы мутаций. Вместе с тем, различные мутагены могут вызывать у далеких в генетическом отношении организмов одинаковые наследственные изменения. Степень выраженности мутационных изменений в фенотипе не зависит от интенсивности и продолжительности действия мутагенного фактора. Так, слабый мутагенный фактор, действующий непродолжительное время, способен иногда вызвать более значительные изменения в фенотипе, чем более сильный. Однако с увеличением интенсивности действия мутагенного фактора частота мутаций возрастает до определенного уровня.

Для всех мутагенных факторов не существует нижнего предела их действия, то есть такого предела, ниже которого они не способны вызывать мутации. Это свойство мутагенных факторов имеет важное теоретическое и практическое значение, поскольку свидетельствует о том, что генотип организмов необходимо защищать от всех мутагенных факторов, какой бы низко ни была интенсивность их действия.

Различные виды живых организмов и даже разные особи одного вида неодинаково чувствительны к действию мутагенных факторов.

Значение мутаций в природе состоит в том, что они являются основным источником наследственной изменчивости – фактора эволюции организмов. Благодаря мутациям появляются новые аллели – мутантные . Большинство мутаций вредны для живых существ, поскольку они снижают их приспособленность к условиям обитания. Однако нейтральные мутации при определенных изменениях окружающее среды могут оказаться полезными.

Мутации широко используются в селекции, так как позволяют увеличить разнообразие исходного материала и повысить эффективность селекционной работы.

Выдающийся российский генетик Н. И. Вавилов сформулировал закон гомологических рядов : генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида или рода, можно предвидеть наличие форм с подобным сочетанием признаков в пределах близких видов или родов. При этом, чем более тесные родственные связи меду организмами, тем более схожи ряды их наследственной изменчивости. Эта закономерность, выявленная Вавиловым у растений, оказалась универсальной для всех организмов. Генетической основой данного закона является то, что степень исторического родства организмов прямо пропорциональна количеству их общих генов. Поэтому и мутации этих генов могут быть сходными. В фенотипе это проявляется одинаковым характером изменчивости многих признаков у близких видов, родов и других таксонов.

Закон гомологических рядов объясняет направленность исторического развития родственных групп организмов. Опираясь на него и изучив наследственную изменчивость близких видов, в селекции планируют работу по созданию новых сортов растений и пород животных с определенным набором наследственных признаков. В систематике организмов этот закон позволяет предвидеть существование неизвестных науке систематических групп, если формы с подобными сочетаниями признаков выявлены в близкородственных группах.

Изменчивость - это способность организмов приобретать отличия от других особей своего вида. Бывает трех видов - мутации, комбинации и модификации.


МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ - это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для (мутационный процесс - одна из ).



КОМБИНАТИВНАЯ ИЗМЕНЧИВОСТЬ возникает при перекомбинации (перемешивании) генов отца и матери. Источники:
1) Кроссинговер при мейозе (гомологичные хромосомы тесно сближаются и меняются участками).
2) Независимое расхождение хромосом при мейозе.
3) Случайное слияние гамет при оплодотворении.


Пример: у цветка ночная красавица есть ген красного цвета лепестков А, и ген белого цвета а. Организм Аа имеет розовый цвет лепестков, этот признак возникает при сочетании (комбинации) красного и белого гена.


МОДИФИКАЦИОННАЯ ИЗМЕНЧИВОСТЬ возникает под действием окружающей среды. По наследству не передаётся, потому что при модификациях меняется только фенотип (признак), а генотип не меняется.


Примеры:
1) Можно разрезать корень одуванчика на 2 части и посадить их в разные условия; вырастут разные на вид растения, хотя генотип у них одинаковый.
2) Если человек будет находится на солнце, то он загорит; если будет заниматься физкультурой, то увеличит свои мышцы.
3) При хорошем содержании куры увеличивают яйценоскость, коровы дают больше молока.


Модификационная изменчивость не безгранична, например, белый человек никогда не сможет загореть до состояния негра. Границы, внутри которых могут происходить модификационные изменения, называются «норма реакции» , они заложены в генотипе и передаются по наследству.

1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик мутационной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.

2) поворот участка хромосомы на 180 градусов
3) уменьшение числа хромосом в кариотипе
4) изменения фенотипа в пределах нормы реакции признака
5) рекомбинация генов при кроссинговере

Ответ


2. Все приведённые ниже характеристики, кроме двух, используют для описания мутационной изменчивости. Определите две характеристики, «выпадающие» из общего списка, и запишите в цифры, под которыми они указаны.
1) образуется под воздействием рентгеновских лучей
2) обладает направленной модификацией
3) изменяется в пределах нормы реакции
4) формируется в результате нарушения мейоза
5) возникает внезапно у отдельных особей

Ответ


3. Все приведенные ниже характеристики, кроме двух, используются для описания мутационной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) зависит от действия радиации
2) может проявиться при потере нескольких нуклеотидов
3) характеризуется появлением добавочной хромосомы
4) зависит от широты нормы реакции признака
5) определяется сочетанием гамет при оплодотворении

Ответ


4. Все приведённые ниже процессы, кроме двух, характерны для мутационной изменчивости. Найдите два процесса, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) изменение признака в пределах нормы реакции
2) наследование аутосом
3) изменение числа хромосом в клетке
4) потеря участка хромосомы
5) полиплоидия

Ответ


5. Все приведённые ниже характеристики, кроме двух, используют для описания мутационной изменчивости. Найдите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) случайное сочетание негомологичных хромосом в мейозе
2) перенос участка хромосомы на негомологичную хромосому
3) уменьшение числа хромосом в кариотипе
4) изменения последовательности нуклеотидов в структуре ДНК
5) рекомбинация генов при кроссинговере

Ответ


6ф. Все приведённые ниже характеристики, кроме двух, используют для описания мутационной изменчивости. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) увеличение числа хромосом в клетке
2) независимое расхождение хромосом в мейозе
3) конъюгация и кроссинговер при редукционном делении
4) потеря участка хромосомы
5) изменение последовательности триплетов в нуклеиновой кислоте

Ответ


Выберите три варианта. Мутации ведут к изменению
1) первичной структуры белка
2) этапов оплодотворения
3) генофонда популяции
4) нормы реакции признака
5) последовательности фаз митоза
6) полового состава популяции

Ответ


Выберите один, наиболее правильный вариант. Приспособительное изменение того или иного признака в определенных генетических пределах называют
1) нормой реакции
2) соотносительной изменчивостью
3) мутацией
4) комбинативной изменчивостью

Ответ


Выберите один, наиболее правильный вариант. Норма реакции признака
1) передается по наследству
2) зависит от окружающей среды
3) формируется в онтогенезе
4) зависит от количества хромосом

Ответ


1. Установите соответствие между признаком и видом изменчивости, в результате которой он возникает: 1) комбинативная, 2) модификационная
А) появление зеленой окраски тела у эвглены на свету
Б) сочетание генов родителей
В) потемнение кожи у человека при воздействии ультрафиолетовых лучей
Г) накопление подкожного жира у медведей при избыточном питании
Д) рождение в семье детей с карими и голубыми глазами в соотношении 1:1
Е) появление у здоровых родителей детей, больных гемофилией

Ответ


2. Установите соответствие между примерами и формами изменчивости: 1) комбинативная, 2) модификационная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) изменение окраски шерсти у зайца-беляка в зависимости от температуры
Б) разница в весе у бычков одного отёла, содержащихся в разных условиях
В) появление морщинистых семян у гороха при скрещивании растений с гладкими семенами
Г) наличие листьев разной длины на одном растении
Д) рождение у здоровых родителей ребёнка-дальтоника

Ответ


Установите соответствие между характеристикой и видом изменчивости: 1) мутационная, 2) комбинативная
А) возникает при воздействии радиации
Б) формируется при слиянии гамет
В) обусловлена независимым расхождением пар хромосом
Г) обусловлена обменом генами между гомологичными хромосомами
Д) связана с увеличением числа хромосом в кариотипе

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик комбинативной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите в таблицу цифры, под которыми они указаны.
1) возникновение при действии радиации
2) случайное сочетание негомологичных хромосом в мейозе
3) случайное сочетание гамет при оплодотворении

5) изменение последовательности нуклеотидов в иРНК

Ответ


2. Приведенные ниже характеристики, кроме двух, используются для описания причин комбинативной изменчивости. Определите эти две характеристики, «выпадающие» из общего списка, запишите цифры, под которыми они указаны.
1) случайная встреча гамет при оплодотворении
2) спирализация хромосом
3) репликация ДНК в интерфазе
4) рекомбинация генов при кроссинговере
5) независимое расхождение хромосом в мейозе

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания комбинативной изменчивости. Найдите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) случайное сочетание негомологичных хромосом в гамете
2) изменение последовательности нуклеотидов в ДНК
3) случайная встреча гамет при оплодотворении
4) рекомбинация генов при кроссинговере
5) адекватность фенотипических изменений условиям среды

Ответ


4. Все приведённые ниже характеристики, кроме двух, используют для описания комбинативной изменчивости. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) сочетание генов при образовании гамет
2) формирование генотипа при оплодотворении
3) появление у потомства сочетаний признаков, отсутствующих у родителей
4) изменение ДНК в митохондриях яйцеклетки
5) выпадение аминокислоты и изменение структуры белка

Ответ


5. Все приведённые ниже примеры, кроме двух, характеризуют комбинативную изменчивость. Определите два примера, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) сочетание у потомства признаков обоих родителей
2) появление у здоровых родителей ребёнка, больного гемофилией
3) появление зелёной окраски тела у эвглены на свету
4) рождение голубоглазого ребёнка у кареглазых родителей
5) потемнение кожи у человека при воздействии ультрафиолетовых лучей

Ответ


1. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1. соматическая
2. ненаследственная
3. рождение потомков с новым фенотипом в результате рекомбинации генов вследствие кроссинговера
4. разная масса тела бычков одного приплода
5. мутационная
6. наследственная

Ответ



2. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) соматическая
2) наследственная
3) рождение особи с редуцированными крыльями у родительских организмов дрозофилы
4) разные формы листовой пластинки у стрелолиста
5) мутационная
6) ненаследственная

Ответ



3. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) модификационная
2) генная
3) изменение окраски шерсти у зайца-беляка в зависимости от времени года
4) наследственная
5) комбинативная
6) хромосомная
7) рождение бескрылой особи дрозофилы у крылатых родительских организмов
8) ненаследственная

Ответ



Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
1) только генотипа
2) генотипа и фенотипа
3) мутационная
4) ненаследственная
5) фенотипическая
6) появление цветка с пятью лепестками у сирени
7) появление густого подшёрстка у лисицы зимой
8) рождение ребёнка с синдромом Дауна

Ответ


Выберите один, наиболее правильный вариант. Причиной комбинативной изменчивости может быть
1) изменение генов при репликации ДНК
2) хромосомная мутация
3) матричный синтез ДНК
4) случайная встреча гамет при оплодотворении

Ответ


Выберите один, наиболее правильный вариант. Изменение яйценоскости кур в определенных пределах, зависящих от условий содержания, рациона кормления, – это проявление
1) мутационной изменчивости
2) адаптации
3) нормы реакции признака
4) саморегуляции

Ответ


Выберите два верных утверждения и запишите в таблицу цифры, под которыми они указаны.
1) Форма наследственной изменчивости, обусловленная случайным сочетанием гамет, называется - комбинативная изменчивость.
2) Фенотипическая изменчивость связана с изменениями генотипа.
3) Наследственная изменчивость связана с изменениями генотипа.
4) Модификация – это спонтанно возникающее естественное или искусственно вызванное изменение генетического материала.

Ответ


Установите соответствие между признаками организмов и диапазонами их нормы реакции: 1) узкая норма реакции, 2) широкая норма реакции. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) масса тела крупного рогатого скота
Б) размер глазного яблока у человека
В) количество позвонков в шейном отделе позвоночника млекопитающих
Г) густота шерсти млекопитающих
Д) размер и форма цветка растений
Е) яйценоскость кур

Ответ


Установите соответствие между примерами и видами изменчивости: 1) комбинативная, 2) модификационная, 3) мутационная. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) рождение праворукого ребенка у леворуких родителей
Б) изменение окраски шерсти у горностаевого кролика
В) образование зеленых гладких и желтых морщинистых семян у гороха
Г) рождение голубоглазого ребенка у кареглазых родителей
Д) рождение гладкошерстного потомства у морских свинок с мохнатой шерстью
Е) появление цветка с пятью лепестками у сирени

Ответ

© Д.В.Поздняков, 2009-2019

Наследственные изменения генетического материала теперь называют мутациями. Мутации - внезапные изменения генетического материала, приводящие к изменению тех или иных признаков организмов.

Термин "мутация" впервые ввел в науку голландский генетик Г. де-Фриз. Проводя опыты с энотерой (декоративное растение), он случайно обнаружил экземпляры, отличающиеся рядом признаков от остальных (большой рост, гладкие, узкие и длинные листья, красные жилки листьев и широкая красная полоса на чашечке цветка и т.д.). Причем при семенном размножении растения из поколения в поколение стойко сохраняли эти признаки. В результате обобщения своих наблюдений де-Фриз создал мутационную теорию, основные положения которой не утратили своего значения и по сей день:

© мутации возникают внезапно, скачкообразно, без всяких переходов;

© мутации наследственны, т.е. стойко передаются из поколения в поколение;

© мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями;

© мутации ненаправленны - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении;

© одни и те же мутации могут возникать повторно;

© мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенез , организмы, у которых произошли мутации, - мутантами , а факторы среды, вызывающие появление мутаций, - мутагенными .

Способность к мутированию - одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, как правило, связанной с изменениями во внешней среде.

Классификация мутаций

Существует несколько классификаций мутаций:

© Мутации по месту их возникновения:

¨ Генеративные - возникшие в половых клетках. Они не влияют на признаки данного организма, а проявляются только в следующем поколении.

¨ Соматические - возникающие в соматических клетках. Эти мутации проявляются у данного организма и не передаются потомству при половом размножении (черное пятно на фоне коричневой окраски шерсти у каракулевых овец). Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).



© Мутации по адаптивному значению:

¨ Полезные - повышающие жизнеспособность особей.

¨ Вредные :

§ летальные - вызывающие гибель особей;

§ полулетальные - снижающие жизнеспособность особи (у мужчин рецессивный ген гемофилии носит полулетальный характер, а гомозиготные женщины оказываются нежизнеспособными).

¨ Нейтральные - не влияющие на жизнеспособность особей.

Эта классификация весьма условна, так как одна и та же мутация в одних условиях может быть полезной, а в других - вредной.

© Мутации по характеру проявления:

¨ доминантные , которые могут делать обладателей этих мутаций нежизнеспособными и вызывать их гибель на ранних этапах онтогенеза (если мутации являются вредными);

¨ рецессивные - мутации, не проявляющиеся у гетерозигот, поэтому длительное время сохраняющиеся в популяции и образующие резерв наследственной изменчивости (при изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование).

© Мутации по степени фенотипического проявления:

¨ крупные - хорошо заметные мутации, сильно изменяющие фенотип (махровость у цветков);

¨ малые - мутации, практически не дающие фенотипического проявления (незначительное удлинение остей у колоса).

© Мутации по изменению состояния гена:

¨ прямые - переход гена от дикого типа к новому состоянию;

¨ обратные - переход гена от мутантного состояния к дикому типу.

© Мутации по характеру их появления:

¨ спонтанные - мутации, возникшие естественным путем под действием факторов среды обитания;

¨ индуцированные - мутации, искусственно вызванные действием мутагенных факторов.

© Мутации по характеру изменения генотипа:

¨ генны;

¨ хромосомные;

¨ геномные .

Мутации по характеру изменения генотипа

Мутации могут вызывать различные изменения генотипа, затрагивая отдельно взятые гены, целые хромосомы или весь геном.

Генные мутации

Генными мутациями называют изменения структуры молекулы ДНК на участке определенного гена, кодирующего структуру определенной молекулы белка. Эти мутации влекут за собой изменение строения белков, то есть появляется новая последовательность аминокислот в полипептидной цепи, в результате чего происходит изменение функциональной активности белковой молекулы. Благодаря генным мутациям происходит возникновение серии множественных аллелей одного и того же гена. Чаще всего генные мутации происходят в результате:

© замены одного или нескольких нуклеотидов на другие;

© вставки нуклеотидов;

© потери нуклеотидов;

© удвоения нуклеотидов;

© изменения порядка чередования нуклеотидов.

Хромосомные мутации

Хромосомные мутации - мутации, вызывающие изменения структуры хромосом. Они возникают в результате разрыва хромосом с образованием "липких" концов, "Липкие" концы - это одноцепочечные фрагменты на концах двухцепочечной молекулы ДНК. Эти фрагменты способны соединяться с другими фрагментами хромосом, также имеющих "липкие" концы. Перестройки могут осуществляться как в пределах одной хромосомы - внутрихромосомные мутации, так и между негомологичными хромосомами - межхромосомные мутации.

© Внутрихромосомные мутации:

¨ делеция - утрата части хромосомы (АВСD ® AB);

¨ инверсия - поворот участка хромосомы на 180˚(ABCD ® ACBD);

¨ дупликация - удвоение одного и того же участка хромосомы; (ABCD ® ABCBCD);

© Межхромосомные мутации:

¨ транслокация - обмен участками между негомологичными хромосомами (АВCD ® AB34).

Геномные мутации

Геномными называют мутации, в результате которых происходит изменение в клетке числа хромосом. Геномные мутации возникают в результате нарушения митоза или мейоза, приводящих либо к неравномерному расхождению хромосом к полюсам клетки, либо к удвоению хромосом, но без деления цитоплазмы.

В зависимости от характера изменения числа хромосом, различают:

¨ Гаплоидию - уменьшение числа полных гаплоидных наборов хромосом.

¨ Полиплоидию - увеличение числа полных гаплоидных наборов хромосом. Полиплоидия чаще наблюдается у простейших и у растений. В зависимости от числа гаплоидных наборов хромосом, содержащихся в клетках, различают: триплоиды (3n), тетраплоиды (4n) и т.д. Они могут быть:

§ автополиплоидами - полиплоидами, возникающими в результате умножения геномов одного вида;

§ аллополиплоидами - полиплоидами, возникающими в результате умножения геномов разных видов (характерно для межвидовых гибридов).

¨ Гетероплоидию (анеуплоидия ) - некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более). Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая - на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. Среди анеуплоидов встречаются:

§ трисомики - организмы с набором хромосом 2n+1;

§ моносомики - организмы с набором хромосом 2n -1;

§ нулесомики - организмы с набором хромосом 2n –2.

Например, болезнь Дауна у человека возникает в результате трисомии по 21-й паре хромосом.

Н.И. Вавилов, изучая наследственную изменчивость у культурных растений и их предков, обнаружил ряд закономерностей, которые позволили сформулировать закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки - у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволили самому Н.И.Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Открытый Н.И.Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев у птиц, чешуи у рыб, шерсти у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет огромное значение для селекционной практики. Он позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов, то есть закон указывает направление поисков. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза. Например, в 1927 г. немецкий генетик Э.Баур, исходя из закона гомологических рядов, высказал предположение о возможном существовании безалкалоидной формы люпина, которую можно было бы использовать на корм животным. Однако такие формы не были известны. Было высказано предположение, что безалкалоидные мутанты менее устойчивы к вредителям, чем растения горького люпина, и большая их часть погибает еще до цветения.

Опираясь на эти предположения, Р.Зенгбуш начал поиски безалкалоидных мутантов. Он исследовал 2,5 млн. растений люпина и выявил среди них 5 растений с низким содержанием алкалоидов, которые явились родоначальниками кормового люпина.

Более поздние исследования показали действие закона гомологических рядов на уровне изменчивости морфологических, физиологических и биохимических признаков самых разных организмов - от бактерий до человека.

Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают две основные формы изменчивости : наследственная и ненаследственная.

Наследственная , или генотипическая , изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала.

Ненаследственная , или фенотипическая , или модификационная , изменчивость — изменения признаков организма, не обусловленные изменением генотипа.

Мутации

Мутации — это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма.

Термин «мутация» введен в науку Де Фризом. Им же создана мутационная теория , основные положения которой не утратили своего значения по сей день.

  1. Мутации возникают внезапно, скачкообразно, без всяких переходов.
  2. Мутации наследственны, т.е. стойко передаются из поколения в поколение.
  3. Мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями.
  4. Мутации ненаправленны — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  5. Одни и те же мутации могут возникать повторно.
  6. Мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенезом , а факторы среды, вызывающие появление мутаций, — мутагенами .

По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации.

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

По адаптивному значению выделяют: полезные, вредные (летальные, полулетальные) и нейтральные мутации. Полезные — повышают жизнеспособность, летальные — вызывают гибель, полулетальные — снижают жизнеспособность, нейтральные — не влияют на жизнеспособность особей. Следует отметить, что одна и та же мутация в одних условиях может быть полезной, а в других — вредной.

По характеру проявления мутации могут быть доминантными и рецессивными . Если доминантная мутация является вредной, то она может вызвать гибель ее обладателя на ранних этапах онтогенеза. Рецессивные мутации не проявляются у гетерозигот, поэтому длительное время сохраняются в популяции в «скрытом» состоянии и образуют резерв наследственной изменчивости. При изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование.

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно.

В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате: 1) замены одного или нескольких нуклеотидов на другие; 2) вставки нуклеотидов; 3) потери нуклеотидов; 4) удвоения нуклеотидов; 5) изменения порядка чередования нуклеотидов. Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы. Благодаря генным мутациям возникают множественные аллели одного и того же гена.

Заболевания, причиной которых являются генные мутации, называются генными (фенилкетонурия, серповидноклеточная анемия, гемофилия и т.д.). Наследование генных болезней подчиняется законам Менделя.

Хромосомные мутации

Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами — межхромосомные мутации (транслокация).

Делеция — утрата участка хромосомы (2); инверсия — поворот участка хромосомы на 180° (4, 5); дупликация — удвоение одного и того же участка хромосомы (3); инсерция — перестановка участка (6).

Хромосомные мутации: 1 — парахромосом; 2 — делеция; 3 — дупликация; 4, 5 — инверсия; 6 — инсерция.

Транслокация — перенос участка одной хромосомы или целой хромосомы на другую хромосому.

Заболевания, причиной которых являются хромосомные мутации, относятся к категории хромосомных болезней . К таким заболеваниям относятся синдром «крика кошки» (46, 5р -), транслокационный вариант синдрома Дауна (46, 21 t21 21) и др.

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Гаплоидия — уменьшение числа полных гаплоидных наборов хромосом.

Полиплоидия — увеличение числа полных гаплоидных наборов хромосом: триплоиды (3n ), тетраплоиды (4n ) и т.д.

Гетероплоидия (анеуплоидия ) — некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более).

Наиболее вероятной причиной гетероплоидии является нерасхождение какой-либо пары гомологичных хромосом во время мейоза у кого-то из родителей. В этом случае одна из образовавшихся гамет содержит на одну хромосому меньше, а другая — на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида: нулесомия (2n - 2), моносомия (2n - 1), трисомия (2n + 1), тетрасомия (2n + 2) и т.д.

На генетических схемах, приведенных ниже, показано, что рождение ребенка с синдромом Клайнфельтера или синдромом Тернера-Шерешевского можно объяснить нерасхождением половых хромосом во время анафазы 1 мейоза у матери или у отца.

1) Нерасхождение половых хромосом во время мейоза у матери

Р ♀46, XX × ♂46, XY
Типы гамет 24, XX 24, 0 23, X 23, Y
F 47, XXX
трисомия
по Х-хромосоме
47, XXY
синдром
Клайнфельтера
45, X0
синдром Тернера-
Шерешевского
45, Y0
гибель
зиготы

2) Нерасхождение половых хромосом во время мейоза у отца

Р ♀46, XX × ♂46, XY
Типы гамет 23, X 24, XY 22, 0
F 47, XXY
синдром
Клайнфельтера
45, X0
синдром Тернера-
Шерешевского

Заболевания, причиной которых являются геномные мутации, также относятся к категории хромосомных. Их наследование не подчиняется законам Менделя. Кроме вышеназванных синдромов Клайнфельтера или Тернера-Шерешевского, к таким болезням относятся синдромы Дауна (47, +21), Эдвардса (+18), Патау (47, +15).

Полиплодия характерна для растений. Получение полиплоидов широко используется в селекции растений.

Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

«Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки — у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволил самому Н.И. Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Наследственное варьирование признаков * Рожь Пшеница Ячмень Овес Просо Сорго Кукуруза Рис Пырей
Зерно Окраска Черная + + + + + + +
Фиолетовая + + + + + +
Форма Округлая + + + + + + + + +
Удлиненная + + + + + + + + +
Биол. признаки Образ жизни Озимые + + + + +
Яровые + + + + + + + +

* Примечание . Знак «+» означает наличие наследственных форм, обладающих указанным признаком.

Открытый Н.И. Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев — у птиц, чешуи — у рыб, шерсти — у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет большое значение для селекции, поскольку позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза.

Искусственное получение мутаций

В природе постоянно идет спонтанный мутагенез, но спонтанные мутации — достаточно редкое явление, например, у дрозофилы мутация белых глаз образуется с частотой 1:100 000 гамет.

Факторы, воздействие которых на организм приводит к появлению мутаций, называются мутагенами . Обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.

Индуцированный мутагенез имеет большое значение, поскольку дает возможность создания ценного исходного материала для селекции, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

Модификационная изменчивость

Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды. Среда обитания играет большую роль в формировании признаков организмов. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Примером изменчивости признаков под действием факторов внешней среды является разная форма листьев у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидную. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) появляется загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна.

Модификационная изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений (особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки); 3) соответствие изменений действию фактора среды; 4) зависимость пределов изменчивости от генотипа.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Это объясняется тем, что генотип определяет конкретные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции . Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, чем качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови). Знание нормы реакции имеет большое значение для практики сельского хозяйства.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n ). Степень выраженности изучаемого признака у членов выборочной совокупности различна. Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v . Частота встречаемости отдельных вариант обозначается буквой p . При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд, в котором особи располагаются по возрастанию показателя изучаемого признака.

Например, если взять 100 колосьев пшеницы (n = 100), подсчитать число колосков в колосе (v ) и число колосьев с данным количеством колосков, то вариационный ряд будет выглядеть следующим образом.

Варианта (v ) 14 15 16 17 18 19 20
Частота встречаемости (p ) 2 7 22 32 24 8 5

На основании вариационного ряда строится вариационная кривая — графическое отображение частоты встречаемости каждой варианты.

Среднее значение признака встречается чаще, а вариации, значительно отличающиеся от него, — реже. Это называется «нормальным распределением» . Кривая на графике бывает, как правило, симметричной.

Среднее значение признака подсчитывается по формуле:

где М — средняя величина признака; ∑(v