Николай Бернштейн. Некоторые данные по биодинамике бега выдающихся мастеров. Ходьба человека (анатомическая характеристика) Параметры ходьбы

Ходьба - это автоматизированный двигательный акт, осуществляемый в результате крайне сложной координированной деятельности скелетных мышц туловища, нижних конечностей. Ходьба человека складывается из отдельных шагов, представляющих собой простой локомоторный цикл, где выделяются две фазы:

  1. Переноса.
  2. Опоры.

В фазе переноса происходит непосредственно перенос стопы в воздухе на более отдаленную позицию. В фазе опоры стопа контактирует с поверхностью, по которой перемещается человек. В начале переноса нижней конечности вперед (так называемое начало фазы переноса) происходят следующие движения (рис. 1А):

  1. Сгибание тазобедренного сустава, которое осуществляется при помощи пояснично-подвздошной мышцы.
  2. Сгибание коленного сустава при согласованном действии двуглавой мышцы бедра и седалищно-бедренных мышц (полуперепончатая, полусухожильная мышцы, и длинная и короткая головки двуглавой мышцы бедра).
  3. Сгибание голеностопного сустава с задействованием мышц-сгибателей голеностопного и передней большеберцовой и третичной малоберцовой мышц.
  4. Разгибание пальцев стопы мышцами-разгибателями пальцев стопы (длинный разгибатель пальцев, длинный разгибатель большого пальца стопы, короткий разгибатель пальцев, короткий разгибатель большого пальца стопы).

При начальном контакте стопы с поверхностью наблюдаются такие процессы, как (рис. 1В):

  1. Окончание процесса сгибания тазобедренного сустава пояснично-подвздошной мышцей.
  2. Разгибание коленного сустава четырехглавой мышцей бедра.
  3. Окончание сгибания голеностопного сустава мышцами разгибателями пальцев стопы и сгибателями голеностопного сустава.

В тот момент, когда переносимая нога полностью опирается на поверхность , то наблюдается настойчивое действие четырехглавой мышцы бедра и начало работы большой ягодичной мышцы (рис. 1С).

Рис. 1. Фазы ходьбы человека

Следующая фаза ходьбы заключается в переносе тела вперед . Тут мы наблюдаем такие действия (рис. 2А):

  1. Разгибание тазобедренного сустава посредством воздействия большой ягодичной мышцы и седалищно-бедренных мышц.
  2. Антагонизм-синергизм с четырехглавой мышцей бедра.
  3. Сгибание голеностопного сустава мышцами-сгибателями в синергизме с большой годичной мышцей.

В процессе первого двигательного толчка перед опорой на две ноги наблюдаются такие процессы, как (рис. 2В):

  1. Продолжающееся разгибание тазобедренного сустава большой ягодичной мышцей и седалищно-бедренными мышцами.
  2. Продолжающееся разгибание коленного сустава четырехглавой мышцей бедра.
  3. Разгибание голеностопного сустава двуглавой мышцей бедра и сгибателями пальцев стопы (длинный сгибатель пальцев, длинный и короткий сгибатели большого пальца стопы, короткий сгибатель пальцев.).

В фазе второго двигательного толчка , действующего на несущую ногу человека при полном разгибании, тогда как колеблющаяся конечность собирается наступить на пол наблюдается усиление действия четырехглавой мышцы бедра, большой ягодичной мышцы, седалищно-бедренных мышц, двуглавой мышцы бедра и мышц-сгибателей пальцев стопы (рис. 2С).

В начале перехода с одной несущей конечностью на другую наблюдается процесс укорочения переносимой конечности за счет сокращения седалищно-бедренных мышц и мышц-сгибателей голеностопного сустава, а также сгибание тазобедренного сустава пояснично-подвздошной мышцей (рис. 2D).

В процессе движения конечности спереди усиливается действие пояснично-подвздошной и четырехглавой мышцы бедра с расслаблением седалищно-бедренных мышц. В мести с этим происходит разгибание коленного сустава путем сокращения четырехглавой мышцы беда и поднятие пальцев стопы действием мышц-разгибателей пальцев стопы (рис. 2Е). Далее следует начало нового цикла .

Рис. 2. Фазы ходьбы

Мышцы ног - это не единственные группы мышц, которые участвуют в ходьбе.

Для удержания туловища человека в наклонном положении при переносе ноги сокращаются мышцы задней поверхности туловища такие, как:

1. Трапециевидная мышца.

2. Широчайшая мышца спины.

3. Ромбовидная мышца спины, которая состоит из большой ромбовидной мышцы и малой ромбовидной мышцы.

4. Мышца, выпрямляющая позвоночник.

5. Длиннейшая мышца спины.

С целью предотвращения падения тела назад при заднем шаге происходит напряжение мышц передней поверхности туловища, в большей степени это касается мышц живота:

  1. Прямая мышца живота.
  2. Наружная косая мышца живота.
  3. Внутренняя косая мышца живота.
  4. Поперечная мышца живота.
  5. Квадратная мышца поясницы.

Данные мышцы также работаю в случае, если нужно зафиксировать таз и обеспечить тем самым опору для выноса ноги вперед.

Обратите внимание, что в процессе выноса вперед ноги туловище вместе с тазом совершает поворот вокруг вертикальной оси в направлении опорной ноги. Для этого со стороны опорной ноги напрягаются внутренняя косая мышца живота, а с противоположной стороны - наружная, поперечно-остистая и подвздошно-поясничная мышцы.

Мышцы, которые выпрямляют позвоночник, способствуют уменьшению отклонения всего туловища в одну из сторон (мышца, выпрямляющая позвоночник) и длиннейшая мышца спины.

В определенных случаях можно наблюдать сокращение задних мышц шеи. Помимо уже указанных мышц туловища требуется отметить следующие мышцы:

1. Задняя лестничная мышца.

2. Мышца, поднимающая лопатку.

3. Верхняя задняя зубчатая мышца.

4. Ременная мышца головы и ременная мышца шеи.

5. Полуостистая мышца головы.

6. Полуостистая мышца шеи.

Работа мышц верхней конечности при обычной ходьбе незначительна. Во время движения руки вперед сокращаются мышцы-сгибатели в плечевом и отчасти в локте-вом суставах, а во время движения назад - мышцы-разгибатели в этих суставах.

К мышцам сгибателям плеча относятся :

  1. Передняя часть дельтовидной мышцы.
  2. Большая грудная мышца.
  3. Клювовидно-плечевая мышца.
  4. Двуглавая мышца плеча.

К мышцам-разгибателям плеча относятся :

  1. Задняя часть дельтовидной мышцы.
  2. Широчайшая мышца спины.
  3. Подкостная мышца.
  4. Малая круглая.
  5. Большая круглая.
  6. Длинная головка трехглавой мышцы плеча.

Мышцы-сгибатели плечевого сустава :

  1. Плечевая мышца.
  2. Плечелучевая мышца.
  3. Двуглавая мышца плеча.
  4. Длинный разгибатель лучезапястного сустава.
  5. Локтевая мышца.
  6. Круглый пронатор.

Мышцы-разгибатели локтевого сустава - это трехглавая мышца плеча.

Работа мышц регулирует маятникообразного движения свободной верхней конечности, что возможно в результате одного попеременного сокращения передней и задней частей дельтовидной мышцы.

Когда все перечисленные мышцы не имеют проблем с растяжением и сокращением, то человек ходит и бегает правильно и легко. Таких людей в мире очень мало . В основном, мышцы имеют те или иные дефекты, связанные с каких-то участков мышц. Отек участка мышцы не дает ей растянутся полностью.

Внутри мышечного волокна, который полностью не растягивается, происходит смещение ядер мышечных клеток в одно место и уменьшение количества митохондрий, которые вырабатывают энергию для полного растяжения мышцы. В зависимости от того, какие мышцы отекшие, а какие остались нормальные, проявляются те или иные дефекты: неправильная походка, неровные ноги, походка на носочках, искривление позвоночника.

Например , мышцы спины, рук и ног не двигаются при тетрапарезе (одна из форм ).

Походка и осанка человека зависят от трех факторов.

В первую очередь от состояния опорно-двигательной системы .

Во вторую – от функционирования центральной нервной системы и регуляции позы и движения.

И в третью очередь – от взаимосвязи и взаимодействия этих систем (ОПС и ЦНС).

Опорно-двигательный аппарат представляет собой ряд кинематических цепей: костно-мышечные рычаги, соединенные шарнирами - суставами.

Стопы (1-й уровень) находятся внизу под длинной цепью, состоящей из нижних конечностей, позвоночного столба и головы. Все изменения, происходящие в стопах неизбежно по цепям (2-й уровень – костно-мышечные рычаги), передаются вверх до последнего звена, вызывая разнообразные эффекты во взаиморасположении сегментов, включении и выключении групп мышц, нарушения цикла ходьбы и т. д.

Такие изменения индуцируют импульсы в головной мозг, где включается 3-й-директивный уровень – центральная нервная система.

ЦНС оценивает новую ситуацию и отдает приказы о коррекции позы, походки, баланса, выработке компенсаторных механизмов и т. д.

Таким образом, любые нарушения стопы, а также вмешательства в стопу вызывают целый спектр эффектов. И чем более радикальные изменения или вмешательства, тем ярче эти эффекты.

БИОМЕХАНИКА ШАГА

Конструкция стопы человека идеальна для ходьбы, что дает нам возможность с наименьшими потерями для опорно-двигательной системы передвигаться на двух ногах. Но, к сожалению, природа никак не рассчитывала на появление обуви как таковой, особенно, узкой и жесткой, а также на высокие шпильки, асфальтовую и бетонную поверхность дорог, по которым мы ходим.

Во время ходьбы на стопу давит полный вес тела, во время бега – и того больше. Стоя человек нагружает стопу ровно половиной веса своего тела. Уже в силу этого необходимо внимательно следить за своими стопами.

Собственно, ходьба – процесс циклический, состоящий из шагов. А цикл шага разделяется на:

1- период опоры (перекат) и

2- период переноса .

Период опоры в свою очередь делится на 3-и фазы:

· опору пяткой (передний толчок);

· опору всей стопой;

· опору на носок (задний толчок).

Задуманная природой форма стопы способствует равномерному распределению этой нагрузки, а изогнутость свода обеспечивает рессорную функцию. У здоровой стопы должны быть три точки опоры: пяточный бугор, головка первой и наружная поверхность пятой плюсневой костей.

Амортизатор" href="/text/category/amortizator/" rel="bookmark">амортизатором при ударных нагрузках, смягчая напряжение от них на скелет, внутренние органы и даже головной мозг.

Перекат стопы начинается с фазы опоры на пятку .

Контакт пятки с опорой происходит несколько латеральнее середины заднего отдела стопы, это приводит к появлению вальгизирующего усилия в подтаранном суставе в начале реакции опоры. Вся пяточная кость смещается в латеральном направлении, а ее передний отдел наклоняется в подошвенном направлении. Пяточная кость выворачивается наружу из-под головки таранной кости, которая ротируется внутрь и, увлекая за собой малоберцовую кость, оказывает давление на большеберцовую. Это движение в подтаранном суставе называется эверсией. В это время происходит передний толчок.

После фазы опоры на пятку наступает фаза стояния на всей стопе .

Стопа под действием веса тела оказывается прижатой к земле, а площадь контакта достигает максимума. Плотная фиксация стопы к поверхности позволяет осуществить смещение голени по блоку таранной кости в направлении сзади вперед. На протяжении периода опоры всей стопой в контакт с опорой постепенно вступают пальцы. По мере отрыва пятки от опоры пальцы начинают разгибаться в плюсне-фаланговых суставах.

В фазе стояния на одной ноге свод стопы снижается до своей минимальной высоты, а площадь опоры достигает максимума. Снижение свода представляет собой результат амортизации нагрузки, приложенной к стопе, и воспроизведение упругого состояния для того, чтобы оттолкнуться от опоры. При отталкивании формируется задний толчок.

Во время отталкивания, с момента отрыва пятки, начинается натяжение подошвенного апоневроза. Этот процесс носит название «эффект лебедки». Натягиваемой частью является сам апоневроз, а головки плюсневых костей выступают в качестве барабана лебедки. Натяжение апоневроза происходит одновременно с напряжением трехглавой мышцы голени. Благодаря тяге апоневроза пяточная кость притягивается кпереди, а натяжение трехглавой мышцы голени подтягивает пятку кзади. Пяточная кость оказывается растянутой в двух направлениях, что приводит к стабилизации стопы. Стабилизация придает стопе необходимую жесткость, чтобы выполнить функцию рычага при отталкивании от опоры.

Во время фазы заднего толчка происходит движение, называемое инверсией стопы.

Это процесс, обратный эверсии. Инверсия осуществляется благодаря действию 2-х сил: натяжению подощвенного апоневроза и тяги 3-х главой мышцы голени.

В результате инверсии в подтаранном суставе возникает варизирующее усилие. При этом вся пяточная кость совершает движение внутрь, в медиальном направлении, а таранная кость ротируется наружу. Эти движения начинаются при отрыве пятки от опоры и оканчиваются в момент полного отрыва пальцев от опоры. К этому моменту оканчивается сгибание в I-м плюсне-фаланговом суставе. Полная амплитуда движений в этом суставе обеспечивает телу плавное ускорение по горизонтали, что снижает энергозатраты при ходьбе.

Идеальная стопа характеризуется нейтральным положением таранного сустава в середине опорной фазы. Это нейтральное положение требует незначительной мышечной активности для создания равновесия и обеспечивает эффективное поглощение ударной силы и продвижение вперед.

Проблемы биомеханического характера возникают в результате чрезмерной или ограниченной пронации во время опорной фазы.

В заключение

Нарушения строения стопы, силы и согласованности действия мышц, прочности и эластичности связок приводит к нарушению функций стопы и изменению походки, а также нарушениям осанки, болям и проблемам в вышележащих сегментах.

Врач-подиатр профессионально определит биомеханические нарушения походки, назначит коррекционные процедуры и даст указания по их устранению.

ПРОНАЦИЯ И СУПИНАЦИЯ

Именно стопа принимает на себя первый «удар» при ходьбе. Во время опоры на всю стопу происходит пронация , необходимая для амортизации и адаптации стопы к поверхности. Во время опоры на передний отдел стопа становится жесткой, происходит супинация , или, проще говоря, задний толчок.

Процесс пронации состоит из снижения высоты продольного свода (эверсии), отведения стопы и сгибания стопы на себя. Стопа в этот момент должна быть достаточно мягкой, чтобы сработать как пружинка. Процесс супинация состоит из подъема продольного свода (инверсии), приведения стопы и подошвенного сгибания стопы (или же опоры на носок). Супинация способствует толчковой функции, выталкивает тело вперед – для этого стопа, в отличие от пронации, должна быть достаточно твердой.

В норме, в фазе пронации стопа становится мягкой, а в фазе супинации – твердой. В случае же деформированных стоп, картина существенно меняется.

Условно можно выделить две основные деформации стопы:

- гиперпронированная стопа – (чрезмерная пронация стопы);

- полая стопа – (жесткая, постоянно «супинированная» стопа).

Пронированная стопа

Пронация здоровой стопы обеспечивает правильный шаг за счет большого количества задействованных суставов, мышц и сухожилий, вплоть до колена и бедра. Их слаженная работа обеспечивает адекватную опору и амортизацию.

В норме пронация стопы составляет порядка 5 градусов. Самое небольшое изменение степени пронации стопы моментально повлечет за собой возникновение компенсаторных процессов в голеностопе, колене, тазобедренных суставах и пояснично-крестцовых отделах спины.

Гиперпронация сопровождается снижением внутреннего продольного свода стопы. И чем более выражена степень гиперпронации стопы, тем более сильной будет нагрузка на опорно-двигательную систему.

https://pandia.ru/text/80/285/images/image006_39.jpg" width="421" height="275 src=">

Гиперсупинированная, жесткая, полая стопа многими ошибочно воспринимается как стопа с высоким подъемом. И неудивительно – крайне высокая арка свода стопы для обывателя действительно выглядит как высокий подъем.

У полой стопы понижена приспособляемость переднего отдела к поверхности, в результате чего ударная сила шага без смягчения переходит выше: в коленный сустав и, как по цепочке, вплоть до шейного отдела позвоночника, что может вызывать головные боли. В случае подобной деформации в фазе полной опоры на всю стопу не происходит амортизации, а, соответственно, и адаптации стопы под поверность.

У полой стопы пятка уходит внутрь, арка свода становится выше, опора происходит на наружный край стоп. Передний отдел такой стопы плохо или вообще не приспосабливается к опоре, отсутствует амортизация.

Вследствие соответствующей постановки стопы мозоли возникают под головками пятой плюсневой косточки. А так как отталкивание от поверхности происходит первым пальцем, то и на нем происходит омозоление – ближе к середине пальца.

Так же, как и при пронированной, у супинированной стопы происходит искривление первого пальца и его отклонение в сторону остальных с увеличением боковой косточки. Но при данной стопе чаще возникает дополнительный сомнительный «бонус» - молоткообразная деформация второго, третьего и четвертого пальцев. Чаще всего при полой стопе боли возникают по наружной поверхности голени, также чаще возникают боли в наружной поверхности бедра.

В заключение

В чистом виде пронированные или супинированные стопы встречаются довольно редко. Чаще можно обнаруживать сочетания этих состояний.

Врач-подиатр определяет вид деформации исходя из эластичности стопы: мягкая, жесткая и полужесткая.

Жесткая стопа требует для стелек более мягких материалов, мягкая стопа - более жестких. Это позволяет улучшить функции стопы.

Сочетание материалов различной жесткости (мягкости); материалов, восстанавливающих форму; различных покрытий, а так же различных корригирующих элементов позволяет изготовить и смоделировать стельки, максимально отвечающие требованиям конкретного человека.

ПЛОСКОСТОПИЕ

Такой популярный диагноз как плоскостопие в силу распространенности уже давно не привлекает к себе должного внимания. Однако не все так безобидно, как кажется.

Для того, чтобы осознать весь масштаб катастрофы, необходимо понимать, что стопа – это основной опорный отдел нижней конечности, на который приходится огромная нагрузка.

Свод стопы ориентирован в продольном и поперечном положениях, отчего их еще называют продольным и поперечным сводами . Высота свода и в продольном, и в поперечном направлениях удерживаются за счет разнообразных мышц и связок стопы, сгибателей пальцев, и подошвенного апоневроза.

Виды плоскостопия и его степени

Плоскостопие может быть врожденным или приобретенным . В первом случае причины кроются в патологиях внутриутробного развития стоп плода.

Причин же приобретенного плоскостопия довольно много, их можно разделить на две группы.

1. Неподходящая обувь, избыточный вес, травмы (переломы костей переднего отдела стопы, неправильно сросшиеся переломы лодыжек) могут привести к деформации стопы в виде плоскостопия.

2. Слабость мышц и связок и/или резкое изменение образа жизни с малоподвижного на активный.

Приобретенное плоскостопие может быть травматическим, паралитическим и рахитическим. Эти виды встречаются относительно редко. В отличие от «популярного» статического плоскостопия.

Степень плоскостопия определяется по размеру угла свода стопы. Формирующаяся деформация стопы проходит три фазы.

В начальной, первой, фазе плоскостопие называют слабовыраженным . Оно может сопровождаться незначительным изменением внешнего вида стопы, а также тупой болью в стопе и передней поверхности голени. После отдыха неприятные ощущения проходят.

Развиваясь, деформация превращается в перемежающееся, умеренно выраженное плоскостопие , сопровождающееся более существенным изменением вида стопы. К концу дня своды стопы понижаются, но после отдыха принимают нормальное положение. Также после отдыха проходит боль, возникающая в подошве стопы, предплюсне и мышцах голени. На эту фазу указывает появившиеся косолапость и грузность походки.

При дальнейшей прогрессии нарушается взаимное расположение костей, ведущее к перенапряжению связок. Деформация переходит в фазу выраженного плоскостопия . В этой фазе, когда стопа уже полностью деформирована, происходит нарушение работы всей опорно-двигательной системы.

Деформации свода стопы также делятся на продольное плоскостопие и поперечное.

При поперечном плоскостопии передний отдел стопы становится шире, первый палец отклоняется в сторону остальных четырех, которые, в свою очередь, приобретают молоткообразную форму. Появляются «натоптыши», косточка у первого пальца становится более выраженной.

Первая степень такой деформации напоминает о себе периодическим возникновением болей в передней части стоп. Как правило, возникает в результате повышенных физических нагрузок или длительного времени на ногах и проходит после отдыха.

Во второй степени боль локализуется довольно четко – головками средних плюсневых костей, становится более сильной и продолжительной.

При плоскостопии третьей степени болезненные ощущения усиливаются еще больше и становятся постоянными, локализуясь на поверхности стопы под головками всех плюсневых костей.

Поперечное плоскостопие часто сочетается с продольным.

При продольной деформации голеностопы заваливаются внутрь, а пятка наружу, первый палец также значительно смещается в сторону других, появляется выпирающая «косточка», внутренняя часть стопы частично или полностью опускается.

Сопровождается такое плоскостопие болью в средней части стопы, усталостью и неприятными ощущениями в мышцах голени во время ходьбы и в конце дня, частыми судорогами икроножных мышц, ограничением подвижности в суставах стоп, затруднениями при ходьбе. Все эти симптомы, конечно, возникают не в один день.

Продольное плоскостопие при первой степени не очень беспокоит человека: несильные болевые ощущения при физических нагрузках и повышенная усталость в ногах в конце дня обычно не воспринимаются серьезно. Однако стоит прислушаться к этим ощущениям.

На этом деформация не остановится и перейдет во вторую степень . Боли усилятся, внешний вид стопы заметно поменяется, вызывая уже трудности при подборе обуви и усиление боли, которые, правда, будут проходить после длительного отдыха.

Дальнейшее развитие продольного плоскостопия выльется в третью степень , при которой боли усилятся еще больше и станут постоянными. При этом болевые ощущения распространятся не только на стопу, но и на голень и поясницу.

Симптомы, свидетельствующие об изменении формы стопы, являются: смещение пальцев, появление «косточки» возле большого пальца, изменение формы пальцев; снижение свода; повышенная утомляемость при ходьбе; боли при длительной ходьбе, как в суставах, так и в икроножных мышцах; омозолелости; пяточные шпоры; головные боли.

В заключение

Сделать подобное невыгодное приобретение довольно просто в любом возрасте. Даже если с точки зрения здоровья и наследственности ничто не предвещало беды. Кроме того, шансы получить деформацию стоп одинаково равны и у тех, кто весь рабочий день проводит на ногах, и у тех, кто сидит за офисным столом.

Если вы обнаружили все или хотя бы несколько из перечисленных симптомов, то лучше не надеяться на традиционное «авось». Способность к амортизации деформированной стопы сводится практически к нулю, и ударная нагрузка начинает напрямую передаваться на суставы ног и позвоночник, а это чревато серьезными последствиями для здоровья организма в целом.

Необходимо также учитывать, что лечению плоскостопие не поддается, но вот предотвратить его дальнейшее развитие можно. И чем раньше вы обратите внимание на состояние своих стоп, тем больше у вас будет пространства для маневра. А именно для принятия профилактических мер: массажи, гимнастика для стоп и, конечно, правильный подбор обуви и анатомически правильных стелек. Комплексный подход к проблеме позволит избежать тяжелых последствий такого, казалось бы, пустякового диагноза.

Другие определения

Существуют и другие определения, характеризующие эту локомоцию:

Виды ходьбы

как естественной локомоции : как спортивной и оздоровительной локомоции: как военно-прикладной локомоции
  1. Ходьба нормальная
  2. Патологическая ходьба:
  • при нарушении подвижности в суставах
  • при утрате или нарушении функции мышц
  • при нарушении масс-инерционных характеристик нижней конечности
(Например, ходьба на протезе голени, бедра)
  • Ходьба с дополнительной опорой на трость (на две трости)
  • Ходьба на лыжах
  • Ходьба оздоровительная
  • Ходьба нордическая (Скандинавская ходьба) (eng.) (с опорой на палки)
Маршировка (eng.) (организованная ходьба, упражнение в мерном хождении правильными построенными рядами)

Не следует путать виды ходьбы с видами походки . Ходьба - двигательный акт, разновидность двигательной активности. Походка - особенность ходьбы человека, «манера ходить».

Задачи ходьбы

Задачи ходьбы как важной локомоторной функции:

  • Безопасное линейное поступательное перемещение тела вперёд (главная задача).
  • Удержание вертикального баланса, предотвращение падения при движении.
  • Сохранение энергии, использование минимального количества энергии за счёт её перераспределения в течение цикла шага.
  • Обеспечение плавности передвижения (резкие движения могут являться причиной повреждения).
  • Адаптация походки для устранения болезненных движений и усилий.
  • Сохранение походки при внешних возмущающих воздействиях или при изменении плана движений (Стабильность ходьбы).
  • Устойчивость к возможным иннервационым и биомеханическим нарушениям.
  • Оптимизация передвижения, прежде всего, повышение эффективности безопасного перемещения центра тяжести с наименьшим расходом энергии.

Параметры ходьбы

Общие параметры ходьбы

Наиболее общими параметрами, характеризующими ходьбу, являются линия перемещения центра масс тела, длина шага, длина двойного шага, угол разворота стопы, база опоры, скорость перемещения и ритмичность.

  • База опоры - это расстояние между двумя параллельными линиями, проведёнными через центры опоры пяток параллельно линии перемещения .
  • Короткий шаг - это расстояние между точкой опоры пятки одной ноги и центром опоры пятки контралатеральной ноги.
  • Разворот стопы - это угол, образованный линией перемещения и линией, проходящей через середину стопы: через центр опоры пятки и точку между 1 и 2 пальцем.
  • Ритмичность ходьбы - отношение длительности переносной фазы одной ноги к длительности переносной фазы другой ноги.
  • Скорость ходьбы - число больших шагов в единицу времени. Измеряется в единицах: шаг в минуту или км. в час. Для взрослого - 113 шагов в минуту.

Биомеханика ходьбы

Ходьбу при различных заболеваниях изучает раздел медицины - клиническая биомеханика ; ходьбу как средство достижения спортивного результата или повышения уровня физической подготовленности изучает раздел физической культуры - спортивная биомеханика . Ходьбу изучают многие другие науки: компьютерная биомеханика , театральное и балетное искусство, военное дело . Основой для изучения всех биомеханических наук является биомеханика ходьбы здорового человека в естественных условиях. Ходьбу рассматривают с позиции единства биомеханических и нейрофизиологических процессов, которые определяют функционирование локомоторной системы человека .

Биомеханическая структура ходьбы = + + +

Временная структура ходьбы, обычно основана на анализе результатов подографии. Подография позволяет регистрировать моменты контакта различных отделов стопы с опорой. На этом основании определяют временные фазы шага.

Кинематику ходьбы изучают с использованием контактных и бесконтактных датчиков измерения углов в суставах (гониометрия), а также с применением гироскопов - приборов, позволяющих определить угол наклона сегмента тела относительно линии гравитации. Важным методом в исследовании кинематики ходьбы является методика циклографии - метод регистрации координат светящихся точек, расположенных на сегментах тела.

Динамические характеристики ходьбы изучают с применением динамографической (силовой) платформы. При опоре силовую платформу регистрируют вертикальную реакцию опоры, а также горизонтальные её составляющие. Для регистрации давления отдельных участков стопы применяют датчики давления или тензодатчики , вмонтированные в подошву обуви.

Физиологические параметры ходьбы регистрируют при помощи методики электромиографии - регистрации биопотенциалов мышц. Электромиография, сопоставленная с данными методик оценки временной характеристики, кинематики и динамики ходьбы, является основой биомеханического и иннервационного анализа ходьбы.

Временна́я структура ходьбы

Простая двухконтактная подограмма

Основной метод исследования временно́й структуры - метод подографии. Например исследование ходьбы с применением самой простой, двухконтактной электроподографии заключается в использовании контактов в подошве специальной обуви, которые замыкаются при опоре на биомеханическую дорожку. На рисунке изображена ходьба в специальной обуви с двумя контактами в области пятки и переднего отдела стопы . Период замыкания контакта регистрируется и анализируется прибором: замыкание заднего контакта - опора на пятку, замыкание заднего и переднего - опора на всю стопу, замыкание переднего контакта - опора на передний отдел стопы. На этом основании строят график длительности каждого контакта для каждой ноги.

Временная структура шага

Основные методы исследования: циклография, гониометрия и оценка движения сегмента тела при помощи гироскопа .

Метод циклографии позволяет регистрировать изменение координат светящихся точек тела в системе координат.

Гониометрия - изменение угла ноги прямым методом с применением угловых датчиков и неконтактным по данным анализа циклограммы.

Кроме того, применяют специальные датчики гироскопы и акселерометры . Гироскоп позволяет регистрировать угол поворота сегмента тела, к которому он прикреплен, вокруг одной из осей вращения, условно названной осью отсчета. Обычно гироскопы применяют для оценки движения тазового и плечевого пояса, при этом последовательно регистрируют направление движения в трех анатомических плоскостях - фронтальной, сагиттальной и горизонтальной.

Оценка результатов позволяет определить в любой момент шага угол поворота таза и плечевого пояса в сторону, вперед или назад, а также поворот вокруг продольной оси. В специальных исследованиях применяют акселерометры для измерения в данном случае тангенциального ускорения голени.

Для исследования ходьбы используют специальную биомеханическую дорожку, покрытую электропроводным слоем.

Важную информацию получают при проведении традиционного в биомеханике циклографического исследования, которое, как известно, основано на регистрации методом видео- кинофотосъёмки координат светящихся маркеров, расположенных на теле испытуемого.

Динамика ходьбы

Динамика ходьбы не может быть изучена методом прямого измерения силы , которая продуцируется работающими мышцами. До настоящего времени отсутствуют доступные для широкого использования методики измерения момента силы живой мышцы, сухожилия или сустава. Хотя следует отметить, что прямой метод, метод имплантации датчиков силы и давления непосредственно в мышцу или сухожилие применяется в специальных лабораториях. Прямой метод исследования вращающего момента осуществляется также при использовании датчиков в протезах нижних конечностей и в эндопротезах суставов.

Представление о силах, воздействующих на человека при ходьбе, может быть получено или в определении усилия в центре масс всего тела, или путём регистрации опорных реакций.

Практически, силы мышечной тяги при циклическом движении можно оценить, только, решая задачу обратной динамики. То есть зная скорость и ускорение движущегося сегмента, а также его массу и центр масс , мы можем определить силу , которая вызывает это движение, следуя второму закону Ньютона (сила прямо пропорциональна массе тела и ускорению).

Реальные силы при ходьбе, которые можно измерить - это силы реакции опоры. Сопоставление силы реакции опоры и кинематики шага позволяют оценить величину вращающего момента сустава. Расчет вращающего момента мышцы может быть произведён исходя из сопоставления кинематических параметров, точки приложения реакции опоры и биоэлектрической активности мышцы.

Сила реакции опоры

Сила реакции опоры - сила, действующая на тело со стороны опоры. Эта сила равна и противоположна той силе, которую оказывает тело на опору.

Вертикальная составляющая силы реакции опоры

Вертикальная составляющая вектора опорной реакции.

График вертикальной составляющей опорной реакции при ходьбе в норме имеет вид плавной симметричной двугорбой кривой. Первый максимум кривой соответствует интервалу времени, когда в результате переноса тяжести тела на опорную ногу происходит передний толчок, второй максимум (задний толчок) отражает активное отталкивание ноги от опорной поверхности и вызывает продвижение тела вверх, вперёд и в сторону опорной конечности. Оба максимума расположены выше уровня веса тела и составляют соответственно при медленном темпе примерно 100 % от веса тела , при произвольном темпе 120 %, при быстром - 150 % и 140 %.

Минимум опорной реакции расположен симметрично между ними ниже линии веса тела. Возникновение минимума обусловлено задним толчком другой ноги и последующим ее переносом; при этом появляется сила, направленная вверх, которая вычитается из веса тела. Минимум опорной реакции при разных темпах составляет от веса тела соответственно: при медленном темпе - примерно 100 %, при произвольном темпе 70 %, при быстром - 40 %.

Таким образом, общая тенденция при увеличении темпа ходьбы состоит в росте значений переднего и заднего толчков и снижении минимума вертикальной составляющей опорной реакции.

Продольная составляющая силы реакции опоры

Продольная составляющая вектора опорной реакции это, по сути, срезывающая сила равная силе трения, которая удерживает стопу от переднезаднего скольжения. На рисунке изображён график зависимости продольной опорной реакции в зависимости от длительности цикла шага при быстром темпе ходьбы (оранжевая кривая), при среднем темпе (пурпурная) и медленном темпе (синяя).

Точка приложения силы реакции опоры

Реакция опоры - эти силы приложенные к стопе. Вступая в контакт с поверхностью опоры, стопа испытывает давление со стороны опоры, равное и противоположное тому, которое стопа оказывает на опору. Это и есть реакция опоры стопы. Эти силы неравномерно распределяются по контактной поверхности. Как и все сила такого рода их можно изобразить в виде результирующего вектора, который имеет величину и точку приложения.

Точка приложения вектора реакции опоры на стопу иначе называется центром давления. Это важно, для того чтобы знать, где находится точка приложения сил, действующих на тело со стороны опоры. При исследовании на силовой платформе эта точка называется точкой приложения силы реакции опоры.

Траектория приложения силы реакции опоры

Работа мышц-разгибателей является основным силовым источником для перемещения общего центра масс. Активность мышц разгибателей обусловлена также необходимостью притормаживания движения сегментов в фазу переноса. Сокращение мышц сгибателей направлено на коррекцию положения или движения конечности в переносную фазу. При обычных условиях ходьбы корригирующая функция мышц минимальна. Прямая мышца в составе четырёхглавой бедра обеспечивает амортизацию переднего толчка и последующее разгибание в коленном суставе в фазу опоры. Большая ягодичная мышца обеспечивает разгибание бедра в фазу опоры. Икроножная мышца - отталкивание от опорной поверхности и вертикальное перемещение общего центра масс. Подколенные сгибатели - регуляция скорости движения в коленном суставе. Передняя большеберцовая - коррекцию положения стопы.

Чередование различных режимов деятельности мышц заключает в себе определённый биомеханический смысл: во время уступающей работы увеличивается напряжение мышцы и её рефлекторная активация, кинетическая энергия переходит в потенциальную энергию упругой деформации мышц. При этом эффективность уступающей (отрицательной) работы мышц превышает в 2-9 раз эффективность их преодолевающей (положительной) работы.

Во время преодолевающего режима мышца производит механическую работу , при этом потенциальная энергия упругой деформации мышц превращается в кинетическую энергию всего тела или его отдельных частей. На первый взгляд, преодолевающий режим работы мышц обусловливает возникновение и ускорение движений, а уступающий режим - их замедление или прекращение. На самом деле уступающий режим деятельности мышц имеет более глубокое содержание. «Когда тело человека при ходьбе уже приобрело известную скорость , торможение движений отдельного звена приводит к перераспределению кинетического момента и, следовательно, к ускорению движений смежного звена. Благодаря многозвенной структуре двигательного аппарата такой опосредованный способ управления движениями нередко оказывается энергетически более выгодным, чем прямой, ибо позволяет лучше утилизировать ранее накопленную кинетическую энергию » .

Основные биомеханические фазы

Анализ кинематики, опорных реакций и работы мышц различных частей тела убедительно показывает, что в течение цикла ходьбы происходит закономерная смена биомеханических событий. «Ходьба здоровых людей, несмотря на ряд индивидуальных особенностей, имеет типичную и устойчивую биомеханическую и иннервационную структуру, то есть определённую пространственно-временную характеристику движений и работы мышц» .

Полный цикл ходьбы - период двойного шага - слагается для каждой ноги из фазы опоры и фазы переноса конечности.

При ходьбе человек последовательно опирается то на одну, то на другую ногу. Эта нога называется опорной. Контралатеральная нога в этот момент выносится вперед (Это - переносная нога). Период переноса ноги называется «фаза переноса». Полный цикл ходьбы - период двойного шага - слагается для каждой ноги из фазы опоры и фазы переноса конечности. В опорный период активное мышечное усилие конечностей создаёт динамические толчки, сообщающие центру тяжести тела ускорение , необходимое для поступательного движения. При ходьбе в среднем темпе фаза опоры длится примерно 60 % от цикла двойного шага, фаза переноса примерно 40 %.

Началом двойного шага принято считать момент контакта пятки с опорой. В норме приземление пятки осуществляется на её наружный отдел. С этого момента эта (правая) нога считается опорной. Иначе эту фазу ходьбы называют передний толчок - результат взаимодействия силы тяжести движущегося человека с опорой. На плоскости опоры при этом возникает опорная реакция, вертикальная составляющая которой превышает массу тела человека. Тазобедренный сустав находится в положении сгибания, нога выпрямлена в коленном суставе, стопа в положении лёгкого тыльного сгибания. Следующая фаза ходьбы - опора на всю стопу. Вес тела распределяется на передний и задний отдел опорной стопы. Другая, в данном случае - левая нога, сохраняет контакт с опорой. Тазобедренный сустав сохраняет положение сгибания, колено подгибается, смягчая силу инерции тела, стопа принимает среднее положение между тыльным и подошвенным сгибанием. Затем голень наклоняется вперёд, колено полностью разгибается, центр масс тела продвигается вперед. В этот период шага перемещение центра масс тела происходит без активного участия мышц, за счёт силы инерции . Опора на передний отдел стопы. Примерно через 65 % времени двойного шага, в конце интервала опоры, происходит отталкивание тела вперёд и вверх за счёт активного подошвенного сгибания стопы - реализуется задний толчок. Центр масс перемещается вперёд в результате активного сокращения мышц.

Следующая стадия - фаза переноса характеризуется отрывом ноги и перемещением центра масс под влиянием силы инерции. В середине этой фазы, все крупные суставы ноги находятся в положении максимального сгибания. Цикл ходьбы завершается моментом контакта пятки с опорой.

В циклической последовательности ходьбы выделяют моменты, когда с опорой соприкасаются только одна нога («одноопорный период») и обе ноги, когда вынесенная вперед конечность уже коснулась опоры, а расположенная сзади ещё не оторвалась («двуопорная фаза»). С увеличением темпа ходьбы «двуопорные периоды» укорачиваются и совсем исчезают при переходе в бег . Таким образом, по кинематическим параметрам, ходьба от бега отличается наличием двуопорной фазы.

Эффективность ходьбы

Основной механизм, определяющий эффективность ходьбы - это перемещение общего центра масс.

Перемещение ОЦМ, Трансформация кинетической (T k) и потенциальной (E p) энергии

Перемещение общего центра масс (ОЦМ) представляет собой типичный синусоидальный процесс с частотой соответствующей двойному шагу в медиолатеральном направлении, и с удвоенной частотой в передне-заднем и вертикальном направлении. Перемещение центра масс определяют традиционным циклографическим методом, обозначив общий центр масс на теле испытуемого светящимися точками.

Однако можно поступить проще, математическим способом, зная вертикальную составляющую силы реакции опоры. Из законов динамики ускорение вертикального перемещения равно отношению силы реакции опоры к массе тела, скорость вертикального перемещения равна отношению произведению ускорения на интервал времени, а само перемещение произведению скорости на время. Зная эти параметры, можно легко рассчитать кинетическую и потенциальную энергию каждой фазы шага. Кривые потенциальной и кинетической энергии представляют собой как бы зеркальное отражение друг друга и имеют фазовый сдвиг примерно в 180°.

Известно, что маятник имеет максимум потенциальной энергии в высшей точке и превращает её в кинетическую, отклоняясь вниз. При этом некоторая часть энергии расходуется на трение . Во время ходьбы, уже в самом начале периода опоры, как только ОЦМ начинает подниматься, кинетическая энергия нашего движения превращается в потенциальную, и наоборот, переходит в кинетическую, когда ОЦМ опускается. Таким образом, сохраняется около 65 % энергии. Мышцы должны постоянно компенсировать потерю энергии, которая составляет около тридцати пяти процентов . Мышцы включаются для перемещения центра масс из нижнего положения в верхнее, восполняя утраченную энергию.

Эффективность ходьбы связана с минимизацией вертикального перемещения общего центра масс. Однако увеличение энергетики ходьбы неразрывно связано с увеличением амплитуды вертикальных перемещений, то есть при увеличении скорости ходьбы и длины шага неизбежно увеличивается вертикальная составляющая перемещения центра масс.

На протяжении опорной фазы шага наблюдается постоянные компенсирующие движения, которые минимизируют вертикальные перемещения и обеспечивают плавность ходьбы.

К таким движениям относят:

  • поворот таза относительно опорной ноги,
  • наклон таза в сторону неопорной конечности,
  • подгибание колена опорной ноги при подъеме ОЦМ,
  • разгибание при опускании ОЦМ.
Параметры: Медленный темп Замедленный темп Произвольный темп Ускоренный темп Быстрый темп
Средняя скорость (м/с) / (км/ч) 0,61 / 2,196 0,91 / 3,276 1,43 / 5,148 1,90 / 6,840 2,28 / 8,208
Темп (шаг/мин) 67,8 84,5 109,1 125,0 137,9
Длина шага (метр) 0,51 0,6 0,74 0,84 0,88

См. также

  • Походка - особенности поз и движений при ходьбе, характерный для конкретного человека.
  • Осанка - привычное положение тела человека в покое и движении, в том числе при ходьбе.
  • Ходьба оздоровительная
  • Ходьба на лыжах
  • Стояние

Примечания

Ссылки

4-я фаза задний шаг

5-я фаза момент вертикали

6-я фаза передний шаг

Фазы свободной ноги

Эти шесть фаз двойного шага относятся к одной какой-либо ноге, так как каждая нога в цикле движений при ходьбе (двойном шаге) бывает то опорной, то свободной, повторяя последовательно аналогичные движения.

Ходьба, как и любое другое движение, происходит в результате взаимодействия внешних и внутренних сил. Взаимодействие силы тяжести и силы реакции опоры различно в этом движении в зависимости от его фаз. Сила тяжести действует на протяжении всего цикла движения, а сила реакции опоры - лишь в фазе опорной ноги. В первой фазе - фазе переднего шага опорной ноги, когда телосоприкасается пяткой с опорной поверхностью, - действие силы тяжести направлено вниз-вперед, а силы реакции опоры - вверх-назад. Силу реакции опоры можно разложить на вертикальную и горизонтальную составляющие.

Вертикальная составляющая направлена вверх и противодействует силе тяжести. Если эта составляющая больше силы тяжести, то тело испытывает толчок, направленный вверх, если меньше, тело, а, следовательно и о.ц.т. тела, опускается. Уменьшение толчков, плавность движений при ходьбе достигается использованием амортизационных свойств нижней конечности (приземление на несколько согнутую ногу), мышц-антагонистов и силы инерции.

Горизонтальная составляющая силы реакции опоры в первой фазе опорной ноги направлена назад и несколько уменьшает скорость движения тела. В фазе заднего шага опорной ноги она направлена вперед и способствует увеличению скорости движения, достигает максимума при толчке. Сила реакции опоры передается на о. ц. т тела, который испытывает колебания в трех плоскостях: вверх-вниз, в стороны и вперед. Наиболее высокое положение о.ц.т. тела занимает в момент вертикали опорной ноги, наиболее низкое - в период двойной опоры. Вертикальные колебания о.ц.т. тела при ходьбе могут достигать 4-б см, причем чем больше выпрямлена oпoрная нога, тем колебания о.ц.т. тела больше.

Поскольку стопы при ходьбе несколько развернуты кнаружи сила реакции опоры направлена не строго в передне-заднем направлении и о. ц. т. тела с переносом тяжести тела на опорную ногу перемещается то вправо, то влево. При выносе ноги вперед (в 1-ю фазу опорной ноги) о. ц. т. тела несколько смещается вперед. Скорость движения о. ц. т. тела при ходьбе неодинакова: в фазе переднего шага опорной ноги она несколько уменьшается, а в фазе заднего шага увеличивается.

Площадь опоры при ходьбе изменяется. В период одиночной опоры она наименьшая и соответствует площади одной стопы, двухопорный период - наибольшая и представлена площадью опорных поверхностей стоп и площадью пространства между ним.

Опорная поверхность при ходьбе должна обладать определенной плотностью и шероховатостью. Так, ходьба по рыхлому снегу затруднена из-за невысокой плотности, а ходьба по льду - из-за не значительного трения. Тело при ходьбе находится в состоянии неустойчивого равновесия. Степень устойчивости в зависимости от величины площади опоры и высоты расположения о.ц.т. тела различна.

В период одинарной опоры она невелика (площадь опоры меньше, и о.ц.т. тела расположен выше), в период двойной опоры значительно больше (о. ц. т. тела ниже, и площадь опоры больше).

Различия в направлении, величине и взаимодействии внешних сил в отдельные фазы ходьбы обусловливают и неодинаковое функционирование опорно-двигательного аппарата. Следует заметить, что при ходьбе в работе участвуют почти все мышцы тела человека, но больше других - мышцы нижних конечностей. Для установления особенностей работы двигательного аппарата при ходьбе проводятанализ одного цикла. Вначале рассматривается работа органов движения: нижних конечностей, затем туловища и, наконец, верхних конечностей.

Работа мышц опорной ноги . Во всех фазах опорного периода нижняя конечность выполняет функции амортизатора, опоры всего тела и обеспечивает отталкивание. Соответственно последовательность включения мышц и их напряжение будут различными в отдельные фазы этого периода. В первую фазу, когда необходимо обеспечить амортизацию и фиксацию звеньев нижней конечности, наиболее напряженными оказываются мышцы передней поверхности голени (разгибатели стопы и пальцев), которые выполняют уступающую работу, способствуя плавному опусканию стопы, и малоберцовые мышцы, которые вместе с передней большеберцовой мышцей увеличивают поперечный свод стопы. Несколько согнутое положение ноги в коленном суставе удерживается сокращением мышц задней поверхности бедра, а в тазо-бедренном суставе - мышц передней поверхности бедра (четырехглавой мышцы бедра, портняжной и других мышц, осуществляющих сгибание бедра). Однако напряжение последних невелико. К концу первой фазы усиливается напряжение задней группы мышц голени, мышц передней поверхности бедра и мышц, окружающих тазобедренный сустав.

В момент вертикали особенность работы мышц состоит в том, что кроме мышц, фиксирующих голеностопный, коленный и тазо­бедренный суставы, напрягаются мышцы, отводящие бедро, которые, работая при дистальной опоре, препятствуют наклону таза в сторону свободной ноги (вокруг переднезадней оси). В фазе зад­него шага опорной ноги в наибольшей мере напрягаются мышцы-сгибатели стопы (мышцы задней поверхности голени), разгибатели голени (в основном бедренные головки четырехглавой мышцы бедра) и разгибатели бедра (главным образом большая ягодичная мышца).

Работа мышц свободной ноги . После толчка свободная нога переносится вперед в согнутом положении для уменьшения момента инерции. Поэтому в четвертой фазе - заднем шаге свободной ноги - сокращаются мышцы-сгибатели в коленном суставе (в основном мышцы задней поверхности бедра). В пятой фазе - момент вертикали свободной ноги - происходит сокращение мышц-разгибателей стопы, уменьшающих возможность соприкосновения ее с опорной поверхностью, и сгибателей бедра, способствующих переносу ноги вперед. В шестой фазе к указанным мышцам присоединяется четырехглавая мышца бедра. Ее специфическая так называемая «баллистическая» работа - быстрое сокращение мышцы, сменяющееся столь же быстрым их расслаблением, - обуславливает движение голени вперед по инерции.

Работа мышц туловища . Во время ходьбы, движения туловища происходят вокруг трех осей вращения - поперечной, переднезад­ней и вертикальной. Этим объясняется своеобразие в напряжении отдельных групп мышц. В первой фазе опорной ноги (переднийшаг), туловище под влиянием действующих сил несколько наклоняется вперед. Для удержания его напрягаются мышцы задней по верхности туловища (разгибатели). В фазе заднего шага опорной ноги для предотвращения падения тела назад напрягаются мышцы передней поверхности туловища (сгибатели), преимущественно мышцы живота. Они напряжены и в первой фазе свободной ноги. Сокращаясь при верхней опоре, они фиксируют таз и создают oпору для выноса вперед маховой ноги.

В момент вертикали опорной ноги происходят наклоны туловища в сторону. При этом мышцы туловища, сокращаясь, закрепляютегок нижней конечности, а напряжение мышцы, выпрямляющей позвоночник, на противоположной стороне (на стороне свободной ноги) препятствует опусканию таза и уменьшает наклон туловища в сторону опорной ноги.

В наибольшей мере выражены повороты туловища - скручивание. При выносе вперед свободной ноги (передний шаг), туловище вместе с тазом поворачивается вокругвертикальной оси в сторону опорной ноги. При этом напрягаются внутренняя косая мышца живота с той стороны, в которую поворачивается туловище, а также наружная косая мышца живота, поперечно-остистая (особенно подвздошно-реберная), подвздошно-поясничная и другие - с противоположной стороны.

Голова при ходьбе держится прямо. Этому способствуют мышцы, расположенные в верхнем отделе задней поверхности туловища (трапециевидная, пластырная и др.).

Работа мышц верхних конечностей . Большое значение при ходьбе имеет согласованное движение верхних и нижних конечностей, так называемая «перекрестная координация», при которой вынос вперед правой ноги сочетается с выносом вперед левой руки, и наоборот. Перекрестная координация уменьшает вращательные движения туловища. Движения рук при обычной ходьбе не требуют больших усилий. Движение руки вперед происходит благодаря напряжению мышц, расположенных спереди плечевого сустава (большой грудной, передней части дельтовидной мышцы и клювовидно-плечевой), движение назад обусловлено мышцами, находящимися на задней поверхности плечевого сустава, - задней частью дельтовидной мышцы, широчайшей мышцей спины и длинной головкой трехглавой мышцы плеча. Для этих движений может быть достаточно поочередного сокращения передней и задней частей дельтовидной мышцы. Небольшие сгибания и разгибания в локтевом суставе про­исходят при сокращении двуглавой мышцы плеча и плечевой мышцы (движение вперед), а также трехглавой мышцы плеча (движение назад).

Работа мышц верхних и нижних конечностей при ходьбе носит преимущественно динамический характер, наибольшая нагрузка падает на мощные мышечные группы. Чередование фаз напряжения и расслабления мышц длительное время не вызывает утомления.

Ходьба - прекрасное средство для развития двигательного аппарата, поскольку частоту и длину шагов, а также темп ходьбы легко регулировать. Она оказывает влияние почти на все мышцы человека и на все системы органов.

Бег - это сложное, локомоторное, цикличное движение, связанное, как и ходьба, с отталкиванием тела от опоры и быстрым перемещением его в пространстве.

Между бегом и ходьбой имеются как черты сходства, так и черты различия.

При беге, как и при ходьбе, те же действующие силы, тот же цикл движений, те же фазы движения, такая же перекрестная координация, те же мышечные группы, участвующие в работе.

Основное отличие бега от ходьбы состоит в том, что при беге отсутствует период двойной опоры, тело в опорные периоды опирается поочередно то на одну, то на другую ногу.

Период двойной опоры заменяется в беге периодом полета, когда тело не имеет соприкосновения с опорной поверхностью. Тяжести, действует на протяжении всех фаз бега; сила реакции oпоры - только в опорные периоды. При ходьбе сила сопротивлений среды может не приниматься в расчет, тогда как во время бега она увеличивается по мере увеличения его скорости.

Требования к трению между опорной поверхностью и подошвой в беге выше, чем в ходьбе, поскольку должен быть обеспечен более сильный толчок. В связи с тем что изменить опорную поверхность трудно, применяют соответствующую обувь. Отталкивание при беге производится не только с большей силой, но и под более острым углом.

Величина и направление силы реакции опоры при беге несколько иные, чем при ходьбе.

Если при беге задний толчок (отталкивание) более сильные, чем при ходьбе, то передний, наоборот, менее сильный, отсюда противоотдача, снижающая скорость перемещения о. ц. т. тела значительно меньше. Постановка ноги под большим углом к опорной поверхности и ближе к о.ц.т. тела уменьшает горизонтальную составляющую силы реакции опоры при переднем толчке, в меньшей мере замедляя бег.

Сила инерции при беге больше, чем при ходьбе, что оказывает влияние на траекторию о.ц.т. тела. Он испытывает вертикальные колебания и фронтальные. Наиболее высокое положение о.ц.т. тела занимает в фазе полета, наиболее низкое - в момент вертикали. При этом размах его колебаний вверх и вниз больше, чем при ходьбе, и достигает 10-12 см (Н. А. Бернштейн), тогда как перемещения в сторону менее выражены в связи с особенностью постановки стоп. Стопы располагаются при беге ближе к средней линии, более прямо, без разведения носков в стороны, что не только уменьшает боковые колебания о. ц. т. тела, но и позволяет значительно лучше использовать стопу как рычаг при отталкивании.

Рис . Бег на короткие дистанции. 12 последовательных по­ложений тела в течение двойного шага:

/, 5, 6, 7, И, 12 - периоды полета в воздухе; 2, 3, 4 8, 9, 10 - период опоры на правую ногу (ориг.)

Наклон туловища при беге зависит от скорости бега. Сильный наклон туловища способствует лучшему отталкиванию, но затрудняет вынос маховой ноги вперед; отклонение туловища назад облегчает вынос ноги вперед, но увеличивает угол отталкивания, уменьшая горизонтальную составляющую силы реакции опоры. В беге на короткие дистанции угол наклона туловища больше (55-60°), чем в беге на средние и длинные дистанции, соответственно, 70 0 -75 0 , 75 0 -80 0 , отсюда и вертикаль о.ц.т. тела больше выносится за передний край площади опоры.

Приземление при беге может быть на пятку, на передний отдел стопы или на наружный край ее. Приземление на пятку требует меньшего напряжения мышц, но уменьшает рессорные свойства нижней конечности и увеличивает противоотдачу.Когда стопа ставится на переднюю часть или на наружный край, рессорные свойства нижней конечности используются в большей мере, а мышцы-сгибатели стопы в связи с наклоном голени вперед растягиваются, подготавливаясь к последующему сокращению

Считают, что чем дальше от о.ц.т. тела ставится стопа, тем более вероятно приземление с пятки, чем ближе к о.ц.т. тела, тем вероятнее приземление на передний отдел стопы. Связано это и с наклоном туловища: при сильном наклоне (а также при увеличении скорости бега) стопа ставится на передний отдел, или наружный край, при малом наклоне - на пятку.

Перекрестная координация при беге выражена резче, чем при ходьбе. Руки движутся вперед и назад с большим размахом, для уменьшения момента инерции они согнуты в локтевых суставах, что увеличивает нагрузку на мышцы верхней конечности. Чтобы удержать туловище, напряжение мышц-разгибателей позвоночника также усиливается. Особенно велика нагрузка на мышцы нижней конечности, которые обеспечивают более сильный, чем при ходьбе, толчок, удерживают ногу в более согнутом положении при переносе ее вперед, выполняют уступающую работу при приземлении, способствуя амортизации толчка.

Рис . Бег на средние дистанции. 12 последовательных по­ложений тела в течение двойного шага:

/, 5, 6, 11, 12 - периоды полета в воздухе; 2, 3, 4 - период опоры на левую ногу; 7, 8, 9, 10 - период опоры на правую ногу (ориг.)

Особенности механизма внешнего дыхания зависят от скорости бега. При беге на короткие дистанции дыхание несколько задерживается, на средние и длинные дистанции - учащается. Дыхание осуществляется преимущественно за счет экскурсии грудной клетки. Напряжение мышц живота во всех фазах бега не дает возможности использовать в достаточной мере диафрагмальное дыхание.

Бег способствует развитию всего двигательного аппарата, но особенно мышц нижних конечностей, а также улучшению дыхания и кровообращения

Анатомический анализ плавания кролем на груди

Плавание кролем на груди – это поступательное, сложное, циклическое, разновременно симметричное, локомоторное движение, связанное с подтягиванием и отталкиванием тела от водной поверхности.

При двухударном согласовании циклом движения можно считать два гребковых движения руками и два ударных движения ногами. В цикле выделяют 6 фаз движения рук и 4 фазы движения ног.

Фазы цикла движения рук:

    фаза захвата;

    фаза отталкивания;

    фаза выхода из воды;

    фаза проноса над водой;

    фаза входа в воду.

Фазы цикла движения ног:

    1-я и 2-я фазы подготовительных движений;

    1-я и 2-я фазы ударных движений.

Фаза захвата начинается сразу после входа руки в воду. Прямая рука выполняет движение в направлении вперед-вниз. Она заканчивается с началом напряжения мышц-сгибателей кисти: лучевой и локтевой сгибатели кисти, длинный сгибатель большого пальца и длинный сгибатель пальцев. Пловец как бы опирается о воду.

В фазе подтягивания пловец сгибает и пронирует предплечье. Эти движения происходят за счет сокращения двуглавой мышцы плеча, плечевой, плечелучевой, круглого и квадратного пронаторов. В фазе подтягивания происходит опускание пояса верхних конечностей (движение в сторону ног) в результате сокращения малой грудной мышцы, подключичной, нижних пучков трапециевидной, передней зубчатой, а также большой грудной и широчайшей мышцы спины.

Фаза отталкивания выполняется с разгибанием и приведением плеча и разгибанием предплечья. В фазах гребковых движений кисть фиксирована. Пальцы сомкнуты за счет сокращения мелких мышц кисти (ладонные межкостные и мышца, приводящая большой палец).

Фаза выхода руки из воды происходит в результате дальнейшего разгибания плеча и сгибания предплечья. Плечо разгибают: широчайшая мышца спины, длинная головка трехглавой мышцы плеча, задние пучки дельтовидной, подостная, малая и большая круглые мышцы. Предплечье сгибают двуглавая мышца плеча, плечевая, плечелучевая и круглый пронатор.

Пронос руки над водой осуществляется прямой рукой или согнутой в локтевом суставе. Это движение происходит вначале по инерции, а затем – в результате сокращения мышц, отводящих плечо (дельтовидная и надостная), и мышц, поднимающих пояс верхних конечностей (движение в сторону головы). К ним относятся верхние пучки трапециевидной, малая и большая ромбовидные, грудино-ключично-сосцевидная и мышца, поднимающая лопатку. Следует отметить, что все остальные мышцы верхней конечности при проносе руки над водой расслаблены. Чем выше квалификация пловца, тем меньше мышечных усилий он затрачивает при проносе руки над водой.

Вход руки в воду происходит под действием силы тяжести. В момент касания кистью воды растянуты большая грудная и широчайшая мышца спины. Это позволяет создать оптимальные условия для сокращения их в последующих фазах.

Движения ногами обеспечивают равновесие тела пловца, поддерживают в более высоком положении туловище и способствуют созданию движущих сил. В движении ногами выделяют 4 фазы:

    2 фазы подготовительных движений;

    2 фазы ударных движений.

В 1-й фазе подготовительного движения пловец разгибает бедро. Это происходит в результате сокращения большой ягодичной, большой приводящей, полусухожильной, полуперепончатой и двуглавой мышцы бедра.

Во 2-й фазе подготовительного движения пловец сгибает бедро и голень. Сгибание бедра происходит за счет сокращения подвздошно-поясничной, портняжной, прямой мышцы бедра, гребенчатой, напрягателя широкой фасции бедра. Голень сгибают двуглавая мышца бедра, полусухожильная, полуперепончатая, нежная, портняжная, икроножная и подколенная мышцы.

1-я фаза ударного движения характеризуется еще большим сгибанием бедра.

2-я фаза ударного движения начинается с разгибания бедра и заканчивается захлестывающим движением стопой вниз с полным разгибанием (или даже переразгибанием) голени, что происходит в результате сокращения четырехглавой мышцы бедра. Стопа во всех фазах движения ногами расслаблена.

Туловище пловца активно участвует в рабочих движениях, ритмично поворачиваясь вправо-влево вокруг продольной оси тела (крены). Это осуществляется за счет сокращения косых мышц живота и мышц-вращателей. Чем выше темп плавания и чем больше подвижность плечевых суставов пловца, тем меньше величина кренов.

Дыхание при плавании выполняется только за счет межреберных мышц и диафрагмы. Для вдоха пловец поворачивает голову в сторону, что выполняется за счет сокращения грудино-ключично-сосцевидной мышцы с противоположной стороны, лестничных мышц и мышц-вращателей – с одноименной стороны. В одних вариантах техники плавания вдох выполняется поворотом головы только в одну сторону, а в других – в обе стороны. Выдох осуществляется в воду.

Прыжок в длину с места

Прыжок в длину с места - это сложное, локомоторное, ацикличное, симметричное движение, связанное с отталкиванием тела от опорной поверхности, подбрасыванием его вверх и последующим приземлением. Этот вид прыжка наиболее прост для анатомического анализа, хотя он и является основным, а все другие (с разбегу тройной) - его разновидностями.

Прыжок в длину с места имеет четыре фазы: первая - подготовительная, вторая- толчок, третья - полет и четвертая - приземление..

Движения при прыжке обусловлены взаимодействием внешних и внутренних сил. Из внешних сил наибольшее значение имеют сила тяжести и сила реакции опоры, причем сила тяжести действует на протяжении всех фаз движения, а сила реакции опоры только в первой и четвертой фазах.

О.ц.т. тела при данном виде прыжка описывает параболу, траектория которой представляет собой равнодействующую двух сил: силы толчка и силы тяжести тела.

Сила толчка при прыжке в длину с места должна быть направлена примерно под углом 45° к горизонту (соответственно теоретическим расчетам в механике, так как движение тела в фазе свободного полета при прыжках можно рассматривать как движение любого тела, подброшенного под углом к горизонту).

Площадь опоры в разных фазах прыжка изменяется: в подготовительной фазе она наибольшая, так как образована площадью подошвенной поверхности стоп и площадью подошвенной поверхности расположенного между ними; к концу фазы толчка площадь опоры уменьшается в связи с тем, что с опорной поверхностью соприкасается лишь передний отдел стопы; в начале последней фазы - фазы приземления - площадь опоры также невелика, так как приземление происходит лишь на задний отдел стопы, а к концу этой фазы площадь опоры увеличивается, поскольку прыгун опирается полностью на обе стопы.

В связи с этим и степень устойчивости тела в каждой опорной фазе прыжка неодинакова: в первой и последней фазах устойчивость больше, чем во второй фазе. При этом в первой фазе более выражена устойчивость назад, а в последней - вперед.

Работа двигательного аппарата в первой фазе сводится к обеспечению позы и созданию наиболее выгодных условий для отталкивания. Чтобы отталкивание было сильным, о. ц. т. тела в начале его должен занимать наиболее низкое положение, а в конце - наиболее высокое. Кроме того, важным условием, повышающим силу отталкивания, является растягивание ведущих мышц, осуществляющих его.

В подготовительной фазе тело прыгуна находится в положении приседа. Под действием силы тяжести происходит сгибание в тазобедренном и коленном суставах, разгибание стоп. Туловище не сколько наклонено вперед, руки разогнуты в локтевых суставахиотведены назад, пояс верхних конечностей опущен. Данное положение обеспечивается напряжением мышц, не одноименных движениям в суставах, а их антагонистами. Так, на нижней конечности напряжены разгибатели бедра, разгибатели голени и сгибатели стопы.Они выполняют уступающую работу и находятся в растянутом состоянии. Параллельно поставленные на всю подошвенную поверхность стопы увеличивают растяжение мышц. Отрыв пяточного отдела стопы уменьшает площадь опоры, ухудшает условия равновесия и не обеспечивает достаточного растягивания мышц

Рис. Прыжок в длину с места. 12 последовательных по­ложений тела:

/ - подготовительная фаза; 2, 3, 4, 5, 6 - толчок; 7, 8, 9, 10 - полет в воздухе; 11, 12 - приземление (ориг.)

Туловище и голову удерживают мышцы-разгибатели позвоночного столба, которые также выполняют уступающую работу и находятся в растянутом состоянии.

Положение рук в локтевых суставах обеспечивается напряжением разгибателей предплечья (трехглавой мышцы плеча), а в плечевых - разгибателей плеча (дельтовидной, широчайшей мышцей спины, подлопаточной и др.). Отведенные назад руки растягивают мышцы-сгибатели плеча (грудные мышцы, двуглавую, клювовидно-плечевую).

Положение приседа, опущенный пояс верхних конечностей понижают о. ц. т. тела и растягивают мышцы, обеспечивающие последующее отталкивание.

Во второй фазе происходит отталкивание одновременно двумя ногами. Параллельное расположение стоп обеспечивает более равномерную передачу силы отталкивания через таз к о.ц.т. тела и позволяет в большей мере использовать мышцы подошвенной поверхности стоп.

При отталкивании происходят сгибание в голено-стопном суставе, разгибание в коленном и тазобедренном суставах, выпрямление туловища и резкий взмах выпрямленных рук вверх, что способствует повышению о.ц.т. тела. Нижние конечности, туловище и верхние конечности образуют почти прямую линию, и сила отталкивания передается по костной основе к о.ц.т. тела.

Ведущими мышцами при отталкивании являются: сгибатели стопы (мышцы подошвенной поверхности стопы, задней и наружной поверхностей голени), разгибатели в коленном суставе (четырехглавая мышца бедра), разгибатели в тазобедренном суставе (главным образом большая ягодичная мышца), мышцы-разгибатели позвоночника (преимущественно мышца, выпрямляющая туловище), сгибатели в плечевом суставе (большая и малая грудные мышцы, передняя часть дельтовидной мышцы, клювовидно-плечевая двуглавая мышцы плеча). Все эти мышцы выполняют преодолевающую работу. Для передачи силы отталкивания к о.ц.т. тело прыгуна должно быть закреплено во всех соединениях, поэтому, хотя и на короткий промежуток времени, вместе с указанными мышцами напрягаются и их антагонисты.

Фаза полета не является пассивной, в ней необходимо максимально использовать траекторию полета, принять и сохранить определенное положение тела, которое не только не мешало бы движению, но и способствовало последующему приземлению.

В фазе полета нижние конечности выносят вперед. Для уменьшения их момента инерции происходят сгибание в коленных суставах и разгибание стоп, осуществляемые соответствующими группами мышц, выполняющих удерживающую работу. Вынесение ног вперед возможно благодаря напряжению мышц-сгибателей бедра (подвздошно-поясничной, прямой мышцы бедра, портняжной и гребешковой). Компенсаторно при этом назад и несколько вниз перемещается таз. Одновременно происходят движения рук (вначале вперед, затем вниз) и сгибание туловища. Движения рук обусловлены последовательным напряжением сгибателей и разгибателей плеча. В сгибании туловища принимают участие в основном мышцы живота (прямая и косые мышцы живота).


^ Ходьба в норме
Ходьба - автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности скелетных мышц туловища и конечностей.

Отталкиваясь от почвы, нога приводит тело в движение - вперед и несколько вверх и вновь совершает размах в воздухе.

Последовательность положения конечности взрослого человека при ходьбе показана на рис. 15.16. При ходьбе тело поочередно опирается то на правую, то на левую ногу.

Рис. 15.16. Ходьба в норме. Ширина и длина шага (а). Отклонение центра тяжести (ЦТ) во время ходьбы по вертикальной оси на 5 см (б). Отклонение ЦТ в сторону на 2,5 см (в) (по S. Hoppenfeld, 1983)
Акт ходьбы отличается чрезвычайно точной повторяемостью отдельных его компонентов, так что каждый из них представляет точную копию в предыдущем шаге.

В акте ходьбы деятельное участие принимают также верхние конечности человека: при выносе вперед правой ноги правая рука движется назад, а левая - выносится вперед. Руки и ноги человека при ходьбе совершают движения в противоположных направлениях.

Движение отдельных звеньев свободной ноги (бедра, голени и стопы) определяется не только сокращением мышц, но и инерцией. Чем ближе звено к туловищу, тем меньше его инерция и тем раньше оно может последовать за туловищем. Так, бедро свободной ноги перемещается вперед раньше всего, поскольку оно ближе всего к тазу. Голень, будучи дальше от таза, отстает, что ведет к сгибанию ноги в колене. Точно так же отставание стопы от голени вызывает сгибание в голеностопном суставе (см. рис. 15.16).

Последовательное вовлечение мышц в работу и точная координация их сокращений при ходьбе обеспечиваются у человека ЦНС и главным образом корой больших полушарий головного мозга. С точки зрения нервного механизма, ходьба представляет собой автоматизированный цепной рефлекс, в котором афферентная импульсация, сопровождающая каждый предыдущий элемент движения, служит сигналом для начала следующего.

^ Функциональный анализ ходьбы. Ходьба - это сложное циклическое локомоторное действие, одним из основных элементов которого является шаг (рис. 15.17).

При ходьбе, как и при других видах локомоторного движения, перемещение тела в пространстве происходит благодаря взаимодействию внутренних (сокращение мышц) и внешних (масса тела, сопротивление опорной поверхности и др.) сил. В каждом шаге, совершаемом правой и левой ногой, различают период опоры и период маха. Наиболее характерной особенностью всех видов ходьбы по сравнению с бегом и прыжками является постоянное опорное положение одной ноги (период одиночной опоры) или двух ног (период двойной опоры). Соотношение этих периодов обычно равно 4:1. Как период опоры, так и период маха может быть разделен на две основные фазы, а именно: период опоры - на фазы переднего толчка и заднего толчка, разделенные моментом вертикали; маха - фазы заднего шага и переднего шага, между которыми также находится момент вертикали.

Рис. 15.17. Степень сокращения мышц туловища и нижней конечности

в течение двойного шага при обычной ходьбе (по данным электромиографического анализа, произведенного B.C. Гурфинкелем в ЦНИИТе протезирования и протезостроения). Черным цветом показано максимальное сокращение, двойным штрихом - сильное сокращение, одинарным - среднее сокращение, точками - слабое сокращение, белым показано расслабление мышцы: 1 - прямая мышца живота; 2 - прямая мышца бедра; 3 - передняя большеберцовая мышца; 4 - длинная малоберцовая мышца; 5 - икроножная мышца; 6 - полусухожильная мышца; 7 - двуглавая мышца бедра; S - большая ягодичная мышца; 9 - мышца, натягивающая широкую фасцию; 10 - средняя ягодичнаямышца;11 - крестовоостистая мышца

Фаза переднего толчка. После заключительной фазы переднего шага начинается постановка стопы на почву при почти выпрямленном, но не закрепленном коленном суставе и согнутом, слегка отведенном и супинированном бедре. Стопа становится на опорную поверхность пяткой, после чего она совершает двойной перекат: с пятки на носок и снаружи внутрь. Этот перекат происходит под влиянием силы тяжести тела и последовательного включения в работу короткой малоберцовой мышцы, поднимающей наружу край стопы и далее мышц - длинной малоберцовой, задней большеберцовой, длинного сгибателя большого пальца стопы и длинного сгибателя пальцев, поддерживающих продольную дугу (свод) стопы. Такое движение стопы имеет двоякое значение: увеличение длины шага и растягивание мышц заднего отдела голени, участвующих в отталкивании тела. В начальном периоде опоры приобретает большое значение рессорная функция, выполняемая суставами стопы и незакрепленным суставом колена. Далее под действием тяжести и инерции тела нога несколько сгибается в коленном суставе и разгибается в голеностопном суставе при уступающей работе четырехглавой мышцы и мышц заднего отдела голени, что еще более повышает буферные свойства конечности.

^ Момент вертикали. К моменту вертикали нога выпрямляется и приводится за счет сокращения большей части мышц бедра и отчасти под влиянием силы тяжести. В это время стопа опирается на грунт всей подошвой, причем большинство ее мышц своим сокращением способствует сохранению сводов и участвует в функции удержания равновесия тела.

Фаза заднего толчка тела (отталкивание от опорной поверхности). В связи с этим контактирующая с грунтом конечность удлиняется за счет разгибания во всех ее суставах. В тазобедренном суставе вновь происходит некоторое отведение, но в отличие от переднего толчка, сопровождаемое небольшим поворотом бедра (внутрь). Ведущая роль в этой фазе принадлежит четырехглавой, полу сухожильной, полуперепончатой, длинной головке двуглавой и главным образом ягодичным мышцам.

Фаза заднего шага. В начале этой фазы (непосредственно после окончания заднего толчка) маховая нога находится в положении разгибания, некоторого отведения и поворота внутрь, что приводит к повороту таза вместе с туловищем в противоположную сторону. Из этого положения нога, производящая шаг, начинает совершать сгибание в тазобедренном и коленном суставах,

дополняемое незначительным поворотом ее наружу, что взаимосвязано с вращением таза в сторону маховой ноги. В это время основная нагрузка падает на мышцы: подвздошно-поясничную, приводящие, заднего отдела бедра и отчасти на разгибатели стопы.

^ Момент вертикали. Маховая нога выпрямлена в тазобедренном суставе и достигает максимального сгибания (по сравнению с другими фазами) в суставе колена. Сокращены главным образом мышцы заднего отдела бедра.

^ В фазе переднего шага мышцы заднего отдела бедра расслабляются и благодаря силе инерции и кратковременному баллистическому сокращению четырехглавой мышцы голень выбрасывается вперед. После этого начинается новый цикл движения.

Центр тяжести тела (ЦТ) при ходьбе (рис. 15.18, а) наряду с поступательными движениями (вперед), совершает еще движения боковые и в вертикальном направлении. В последнем случае размах (вверх и вниз) достигает величины 4 см (у взрослого человека), при этом туловище опускается больше всего именно тогда, когда одна нога опирается всей подошвой, а другая вынесена вперед. Боковые движения (качания в стороны) центра тяжести доходят до 2 см.

Колебания ОЦТ тела в стороны связаны с перемещением на опорную ногу всей массы тела, благодаря чему траектория ОЦТ тела проходит непосредственно над площадью опоры. Чем ходьба быстрее, тем эти колебательные движения меньше, что объясняется влиянием инерции тела.

Размер шага в среднем принимается за 66 см, при спокойной ходьбе продолжительность его - около 0,6 сек.

Помимо мышц нижних конечностей при ходьбе включаются в динамическую работу почти все мышцы туловища, шеи и верхних конечностей.

В связи с последовательным чередованием растяжения, сокращения и расслабления различных мышечных групп, что происходит во время ходьбы, значительная нагрузка на всю мышечную систему обычно не вызывает выраженного утомления. В значительной мере это также объясняется тем, что ритмические движения всего тела облегчают нормальную вентиляцию легких и улучшают кровообращение всех органов, включая центральную нервную систему (ЦНС). Таким образом, ходьба - это наилучший вид физической тренировки.

^ Кинематические и динамические характеристики человека между продольными осями смежных сегментов конечности можно измерять (так называемые межзвенные углы). На рис. 15.18 приведены графики межзвенных углов в тазобедренном суставе (ТБС), коленном (КС), голеностопном (ГСС) и плюснефаланговом (ПФС) при ходьбе в норме.

Характерной особенностью графиков этих углов (ангулограмм) является довольно стабильная периодичность. У разных людей меняются только продолжительность периода и диапазон изменений угла (амплитуда). В норме эти амплитуды составляют: в ТБС 26- 30°; в КС в опорный период шага 12-15°; в переносный период - 55-62°; в ГСС подошвенное сгибание равно 17-20°; тыльное - 8-10°. В ПФС всегда имеется тыльное сгибание при переносе (10-12°), при опоре сначала идет выпрямление до 0°, а при заднем толчке (от заднего толчка опорной ноги тело устремляется вперед) в ПФС снова происходит сгибание до 10-12°.

При ходьбе человек взаимодействует с опорной поверхностью, при этом возникают силовые факторы, называемые главным вектором и главным моментом сил реакции опоры. Типичные графики вертикальной и продольной составляющих главного вектора опорной реакции при ходьбе в произвольном темпе в норме представлены на рис. 15.18. Для графика вертикальной составляющей главного вектора опорной реакции характерно наличие двух вершин, соответствующих переднему (опора на пятку) и заднему (отталкивание передним отделом стопы) толчкам. Амплитуды этих вершин превышают массу человека и достигают 1,1-1.25Р - масса человека).

Рис. 15.18. Перемещение общего центра тяжести (ОЦТ) тела при обычной

ходьбе (а). Графики межзвенных углов и опорных реакций при ходьбе

в норме: ТБС, КС, ГСС, ПФС - соответственно, тазобедренный, коленный,

голеностопный, плюснефаланговый суставы; Rz, Ry - вертикальная

и продольная компоненты опорной реакции (б)
Продольная составляющая главного вектора сил реакции опор имеет тоже две вершины разных знаков: первая, соответствующая переднему толчку, направлена вперед; вторая, соответствующая заднему толчку, направлена назад. Так оно и должно быть - отталкиваясь опорной ногой, человек устремляет все тело вперед. Максимумы продольной составляющей главного вектора опорной реакции достигает 0,25Р.

Есть еще одна составляющая главного вектора опорной реакции - поперечная. Она возникает при переступании с одной ноги на другую и ее максимум достигает 8-10% от массы человека.

^ Временная структура шага. Локомоции человека - процесс периодический, в котором через приблизительно равные промежутки времени повторяются сходные положения тела. Наименьшее время, прошедшее от данного положения до его повторения, является временем цикла. При ходьбе и беге время цикла называют по числу сделанных шагов «временем двойного шага». Каждая нога в своем циклическом движении находится либо на опоре, либо переносится на новое место опоры (рис. 15.19).

При беге момент опоры меньше момента переноса; наблюдается период свободного полета над опорой (см. рис. 15.19).

Рис. 15.19. Кинограммы ходьбы (а) и бега (б) на протяжении одиночного шага

и диаграммы времени двойного шага (по Е. Muybriage, 1887; Д.А. Семенову, 1939).

а - начало, е - конец опоры ноги, а и е - левая, а"е" - правая нога, ае - время опоры левой ноги, а"е" - время опоры правой ноги; вверху ае" и а"е" - время двойных опор при ходьбе, внизу е"а и еа" - время полета при беге. Непрерывная линия - опора, штриховая - перенос ноги
^ Внешние силы и силы реакции опоры
На тело человека, идущего или бегущего по поверхности Земли, действуют извне аэродинамические силы сопротивления атмосферы, силы реакции опоры.

Аэродинамические силы распределены по поверхности тела и возрастают приблизительно пропорционально площади фронтальной проекции поверхности тела и квадрату скорости движения.

Одной из наиболее существенных сил является сила реакции опорной поверхности, воздействующая на стопы человека. В соответствии с кинетостатическим принципом Д"Аламбера, эти силы равны и противоположны силам аэродинамического сопротивления, весу частей тела и силам инерции, появляющимся в теле вследствие изменения скоростей движения его частей. Поэтому величина опорных реакций может служить своеобразным индикатором, показывающим одновременное действие всех сил на организм при локомоции.

В течение опорного времени тело человека получает необходимый импульс, являющийся результатом активного действия мускулатуры.

Опорные реакции неравномерно распределены на некоторой сравнительно небольшой площади контакта между стопой и поверхностью опоры. Распределение изменяется в течение времени опоры: вначале давление создается на пятку, затем при постановке всей стопы на опору оно возникает в области плюсневых костей (см. рис. 15.19) и здесь в момент отталкивания от опоры давление достигает максимальной величины. Местоположение максимума давления на стопу изменяется при изменении темпа локомоции, вида локомоции (бег, прыжки, ходьба и пр.). Наиболее часто этот максимум располагается посредине стопы в районе головок плюсневых костей (см. рис. 15.19).

По правилам механики силовое взаимодействие между стопой и опорой может быть представлено одним равнодействующим вектором силы и одним равнодействующим вектором момента сил (см. рис. 15.19). При измерениях с помощью динамометрических платформ, установленных на одном уровне с опорной поверхностью, регистрируются шесть эквивалентных компонент этих двух векторов. Из них три компоненты являются проекциями вектора равнодействующей силы: вертикальная сила - это проекция на нормаль к поверхности платформы (совпадающая с гравитационной вертикалью),

продольная и боковая силы - проекции, расположенные в горизонтальной плоскости, соответственно, по направлению движения и перпендикулярно направлению движения тела (рис. 15.20). Остальные три компоненты - это проекции равнодействующего вектора момента сил на те же направления. Так как продольная и боковая компоненты момента сил зависят только от величины вертикальной силы и от значения координат предполагаемой точки приложения этой силы на плоскости динамометрической платформы, то, приравнивая указанные компоненты момента нулю, находят уравнение для вычисления двух координат точки приложения вертикальной силы.

При ходьбе графики компонент опорной реакции имеют два максимума (рис. 15.21). Первый максимум удерживает тело от падения вперед и возникает на опоре приблизительно в конце отталкивания с носка противоположной ноги. Сила реакции опоры приложена к пятке тормозящей ноги и направлена вверх-назад и слегка внутрь стопы. Момент сил во время опоры на пятку сравнительно невелик, а направление его действия выражено нечетко. Второй максимум на графиках компонент опорных реакций, названный задним толчком, возникает в конце опорной фазы ноги приблизительно перед началом перенесения опоры на противоположную ногу. При заднем толчке реакция опоры приложена в области плюснефаланговых суставов и направлена вверх-вперед и слегка внутрь стопы. Преодолевая инерцию тела и вес, эта сила разгоняет тело в направлении движения, а также способствует боковому движению в сторону противоположной ноги, пятка которой ставится на опору. Между главными максимумами находится пауза в изменениях величины опорной реакции. В это время стопа полностью стоит на опоре и в некоторый момент времени, названный моментом вертикали, тело находится над стоящей стопой, а переносная нога проходит рядом с опорой. Сила реакции опоры приложена вблизи середины стопы и направлена вертикально вверх. Момент сил реакции опоры препятствует развороту стопы носком наружу.

Отмечены небольшие величины боковой силы и момента сил. Это связано с тем, что локомоции осуществляются преимущественно в сагиттальной плоскости, а небольшие боковые силы возникают из-за стремления тела компенсировать небольшие отклонения от сагиттального направления.